Pregled bibliografske jedinice broj: 1220617
Coloring the Voronoi tesselation of lattices
Coloring the Voronoi tesselation of lattices // Workshop on Discrete Geometry with a view on Symplectic and Tropical Geometry
Köln, Njemačka, 2019. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 1220617 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Coloring the Voronoi tesselation of lattices
Autori
Dutour-Sikirić, Mathieu ; Madore, David ; Moustrou, Philippe ; Vallentin, Frank
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Skup
Workshop on Discrete Geometry with a view on Symplectic and Tropical Geometry
Mjesto i datum
Köln, Njemačka, 23.09.2019. - 27.09.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Lattices ; Coloring ; Voronoi polytope
Sažetak
The chromatic number of a lattice is the least number of colors one needs to color the interiors of the cells of the Voronoi tessellation of a lattice so that no two cells sharing a facet are of the same color. We compute the chromatic number of the root lattices, their duals, and of the Leech lattice, we consider the chromatic number of lattices of Voronoi's first kind, and we investigate the asymptotic behaviour of the chromatic number of lattices when the dimension tends to infinity. In passing, we explain the parameter space of Voronoi tesselation of lattice with L-type and C-type.
Izvorni jezik
Engleski
Znanstvena područja
Matematika