Pregled bibliografske jedinice broj: 1220491
Lego-like spheres and tori, enumeration and drawings
Lego-like spheres and tori, enumeration and drawings // 1st Croatian Combinatorial Days
Zagreb, Hrvatska, 2016. (predavanje, domaća recenzija, pp prezentacija, znanstveni)
CROSBI ID: 1220491 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Lego-like spheres and tori, enumeration and
drawings
Autori
Deza, Michel ; Dutour Sikirić, Mathieu
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Skup
1st Croatian Combinatorial Days
Mjesto i datum
Zagreb, Hrvatska, 29.09.2016. - 30.09.2016
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
combinatorics ; enumeration ; drawing
Sažetak
Given a connected surface F^2 with Euler characteristic chi and three integers a, b, k, an ({;a, b}; ; k)-F^2 is a F^2-embedded graph, having vertices of degree only k and only a- and b-gonal faces. By p_a, p_b we denote the number of a-gonal, b-gonal faces. Call an ({;a, b}; ; k)-map lego-admissible if either p_b/p_a, or p_a/p_b is integer. Call it lego-like if it is either ab^f-lego map, or a^fb-lego map, i.e., the face-set is partitioned into (p_a, p_b) isomorphic clusters, legos, consisting either one a-gon and f=p_b/p_a b-gons, or, respectively, f=p_a/p_b a-gons and one b-gon ; the case f=1 we denote also by $ab$. We consider such graphs over the sphere and the plane. We enumerate the possible combination of a, b, k and we represent the obtained maps.
Izvorni jezik
Engleski