Pregled bibliografske jedinice broj: 121880
A Genetic Programming Approach for Developing the Machinability Models
A Genetic Programming Approach for Developing the Machinability Models // CIM 2003: Computer Integrated Manufacturing and High Speed Machining / 9th International Scientific Conference on Production Engineering / Cebalo, Roko ; Schulz, Herbert (ur.).
Zagreb: Hrvatska udruga proizvodnog strojarstva (HUPS), 2003. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 121880 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Genetic Programming Approach for Developing the Machinability Models
Autori
Cukor, Goran ; Kuljanić, Elso
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
CIM 2003: Computer Integrated Manufacturing and High Speed Machining / 9th International Scientific Conference on Production Engineering
/ Cebalo, Roko ; Schulz, Herbert - Zagreb : Hrvatska udruga proizvodnog strojarstva (HUPS), 2003
Skup
CIM 2003: Computer Integrated Manufacturing and High Speed Machining / 9th International Scientific Conference on Production Engineering
Mjesto i datum
Lumbarda, Hrvatska, 05.06.2003. - 06.06.2003
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
machinability; modeling; genetic programming (GP)
Sažetak
According to the International Organization for Standardization (ISO), an ordinary least squares (OLS) linear regression analysis is used for developing the machinability models. However, a possible new approach is worthwhile to be explored from the view of the advanced manufacturing systems and technology. In this paper a non-conventional approach using genetic programming (GP) originally inspired by Darwinian findings about the evolution of the biological species and the survival of the fittest organisms (i.e. natural selection) is proposed. It is illustrated with an example of the tool life modeling at longitudinal hard turning. Also, the proposed approach is found to be efficient and robust, and can be promptly integrated into an intelligent manufacturing system as a powerful tool for machinability modeling.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo