Pregled bibliografske jedinice broj: 1217886
Selection of optimal die casting process parameters based on simulation and genetic algorithms
Selection of optimal die casting process parameters based on simulation and genetic algorithms // Mechanical Technologies and Structural Materials, MTSM2022 / Jozić, Sonja ; Lela, Branimir ; Gjeldum, Nikola (ur.).
Split: Hrvatsko društvo za strojarske tehnologije, 2022. str. 65-70 (poster, međunarodna recenzija, cjeloviti rad (in extenso), stručni)
CROSBI ID: 1217886 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Selection of optimal die casting process parameters
based on simulation and genetic algorithms
Autori
Jozić, Sonja ; Bajić, Dražen ; Dumanić, Ivana ; Ljuba, Brigita
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), stručni
Izvornik
Mechanical Technologies and Structural Materials, MTSM2022
/ Jozić, Sonja ; Lela, Branimir ; Gjeldum, Nikola - Split : Hrvatsko društvo za strojarske tehnologije, 2022, 65-70
Skup
11th International Conference Mechanical Technologies and Structural Materials (MTSM 2022)
Mjesto i datum
Split, Hrvatska, 22.09.2022. - 23.09.2022
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
High-pressure die casting ; Mould ; Optimization ; Simulation ; Aluminum alloy
Sažetak
High pressure die casting is a common process for manufacturing structural components from non- ferrous metals with a low melting point. Process is particularly suitable for large-scale castings production with complex geometry. There are many features affecting the complexity of the process. It is of great importance for engineers to optimize process parameters and improve casting quality. In this paper, design and implementation of predictive models developed for improving the quality of aluminum die castings are presented. The goal is minimizing material shrinkage and solidification time. Design of experiments were obtained using the Box-Behnken method, and experiments were made in virtual environment, i.e. in NovaFlow&Solid software. Regression analysis and analysis of variance were used for obtaining mathematical models. Optimization of mathematical models was performed using genetic algorithms. Optimal values of input parameters are preheating mould temperature of 150 °C, velocity of piston of 2.5 m/s and injection pressure of 49.2 MPa.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split