Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1217590

Accelerometer-based algorithm for the segmentation and classification of repetitive human movements during workouts


Džaja, D.; Čibarić, M.; Šeketa, G.; Magjarević, R.
Accelerometer-based algorithm for the segmentation and classification of repetitive human movements during workouts // Automatika, 63 (2022), 4; 1-14 doi:10.1080/00051144.2022.2121247 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1217590 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Accelerometer-based algorithm for the segmentation and classification of repetitive human movements during workouts

Autori
Džaja, D. ; Čibarić, M. ; Šeketa, G. ; Magjarević, R.

Izvornik
Automatika (0005-1144) 63 (2022), 4; 1-14

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Wearable devices ; accelerometer ; repetition segmentation ; frequency spectrum ; repetition classification ; dynamic time warping

Sažetak
Monitoring a person’s physical activity has a wide range of applications in both sports and medicine. With the advancement of technology for measuring human movement, it is possible to monitor the performed activity without a need for an expert to directly overlook the trainee. While the initial interest focused mainly on aerobic exercises, research has recently begun to focus on strength exercises. The goal is to achieve the highest possible accuracy in tracking movement while maintaining the low cost and energy autonomy of the monitoring device. In this paper, an algorithm for the segmentation and classification of repetitive movements during workouts based on 3- axis accelerometer data from a wearable device is presented. The accelerometer signals were recorded continuously during the workout session which consisted typically of 9 strength exercises, where 8 default movements were repeated in three sets. Segmentation of the acceleration signals recorded during the workout was done using the frequency spectrum of the acceleration magnitude with an accuracy of 99.4%, while the classification of the segmented movements was done using the Dynamic Time Warping (DTW) algorithm with an accuracy of 85.7%.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Goran Šeketa (autor)

Avatar Url Ratko Magjarević (autor)

Avatar Url Dominik Džaja (autor)

Poveznice na cjeloviti tekst rada:

doi www.tandfonline.com

Citiraj ovu publikaciju:

Džaja, D.; Čibarić, M.; Šeketa, G.; Magjarević, R.
Accelerometer-based algorithm for the segmentation and classification of repetitive human movements during workouts // Automatika, 63 (2022), 4; 1-14 doi:10.1080/00051144.2022.2121247 (međunarodna recenzija, članak, znanstveni)
Džaja, D., Čibarić, M., Šeketa, G. & Magjarević, R. (2022) Accelerometer-based algorithm for the segmentation and classification of repetitive human movements during workouts. Automatika, 63 (4), 1-14 doi:10.1080/00051144.2022.2121247.
@article{article, author = {D\v{z}aja, D. and \v{C}ibari\'{c}, M. and \v{S}eketa, G. and Magjarevi\'{c}, R.}, year = {2022}, pages = {1-14}, DOI = {10.1080/00051144.2022.2121247}, keywords = {Wearable devices, accelerometer, repetition segmentation, frequency spectrum, repetition classification, dynamic time warping}, journal = {Automatika}, doi = {10.1080/00051144.2022.2121247}, volume = {63}, number = {4}, issn = {0005-1144}, title = {Accelerometer-based algorithm for the segmentation and classification of repetitive human movements during workouts}, keyword = {Wearable devices, accelerometer, repetition segmentation, frequency spectrum, repetition classification, dynamic time warping} }
@article{article, author = {D\v{z}aja, D. and \v{C}ibari\'{c}, M. and \v{S}eketa, G. and Magjarevi\'{c}, R.}, year = {2022}, pages = {1-14}, DOI = {10.1080/00051144.2022.2121247}, keywords = {Wearable devices, accelerometer, repetition segmentation, frequency spectrum, repetition classification, dynamic time warping}, journal = {Automatika}, doi = {10.1080/00051144.2022.2121247}, volume = {63}, number = {4}, issn = {0005-1144}, title = {Accelerometer-based algorithm for the segmentation and classification of repetitive human movements during workouts}, keyword = {Wearable devices, accelerometer, repetition segmentation, frequency spectrum, repetition classification, dynamic time warping} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font