Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1217488

A Systematic Literature Review on Topic Modelling and Sentiment Analysis


Kunsabo, Josip; Dobša, Jasminka
A Systematic Literature Review on Topic Modelling and Sentiment Analysis // Proceedings of 33rd International Scientific Conference Central European Conference on Information and Intelligent Systems / Vrček, Neven ; Guardia, Lourdes ; Petra, Grd (ur.).
Varaždin, 2022. str. 371-380 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1217488 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Systematic Literature Review on Topic Modelling and Sentiment Analysis

Autori
Kunsabo, Josip ; Dobša, Jasminka

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of 33rd International Scientific Conference Central European Conference on Information and Intelligent Systems / Vrček, Neven ; Guardia, Lourdes ; Petra, Grd - Varaždin, 2022, 371-380

Skup
33rd Central European Conference on Information and Intelligent Systems (CECIIS 2022)

Mjesto i datum
Dubrovnik, Hrvatska, 21.09.2022. - 23.09.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
topic modelling, sentiment analysis, machine learning, deep learning, sentiment lexicon

Sažetak
The human need for organization has always existed, but due to the ever-increasing generation of digital records, it is becoming almost necessary. With the development of information technologies, the use and application of various machine learning methods in the processing of natural language is becoming more widespread. In this paper we will give an overview of methods of topic modelling and sentiment analysis as well as approaches in processing of documents needed for their application. These two tasks of natural language processing are naturally related in the problem of identification of sentiments in the topics automatically extracted from the collection of observed documents.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Profili:

Avatar Url Jasminka Dobša (autor)

Avatar Url Josip Kunsabo (autor)

Poveznice na cjeloviti tekst rada:

archive.ceciis.foi.hr

Citiraj ovu publikaciju:

Kunsabo, Josip; Dobša, Jasminka
A Systematic Literature Review on Topic Modelling and Sentiment Analysis // Proceedings of 33rd International Scientific Conference Central European Conference on Information and Intelligent Systems / Vrček, Neven ; Guardia, Lourdes ; Petra, Grd (ur.).
Varaždin, 2022. str. 371-380 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Kunsabo, J. & Dobša, J. (2022) A Systematic Literature Review on Topic Modelling and Sentiment Analysis. U: Vrček, N., Guardia, L. & Petra, G. (ur.)Proceedings of 33rd International Scientific Conference Central European Conference on Information and Intelligent Systems.
@article{article, author = {Kunsabo, Josip and Dob\v{s}a, Jasminka}, year = {2022}, pages = {371-380}, keywords = {topic modelling, sentiment analysis, machine learning, deep learning, sentiment lexicon}, title = {A Systematic Literature Review on Topic Modelling and Sentiment Analysis}, keyword = {topic modelling, sentiment analysis, machine learning, deep learning, sentiment lexicon}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Kunsabo, Josip and Dob\v{s}a, Jasminka}, year = {2022}, pages = {371-380}, keywords = {topic modelling, sentiment analysis, machine learning, deep learning, sentiment lexicon}, title = {A Systematic Literature Review on Topic Modelling and Sentiment Analysis}, keyword = {topic modelling, sentiment analysis, machine learning, deep learning, sentiment lexicon}, publisherplace = {Dubrovnik, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font