Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1217291

Deep Reinforcement Learning-Based Approach for Autonomous Power Flow Control Using Only Topology Changes


Damjanović, Ivana; Pavić, Ivica; Puljiz, Mate; Brcic, Mario
Deep Reinforcement Learning-Based Approach for Autonomous Power Flow Control Using Only Topology Changes // Energies, 15 (2022), 19; 6920, 16 doi:10.3390/en15196920 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1217291 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep Reinforcement Learning-Based Approach for Autonomous Power Flow Control Using Only Topology Changes

Autori
Damjanović, Ivana ; Pavić, Ivica ; Puljiz, Mate ; Brcic, Mario

Izvornik
Energies (1996-1073) 15 (2022), 19; 6920, 16

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
power system control ; autonomous topology control ; artificial intelligence ; deep reinforcement learning

Sažetak
With the increasing complexity of power system structures and the increasing penetration of renewable energy, driven primarily by the need for decarbonization, power system operation and control become challenging. Changes are resulting in an enormous increase in system complexity, wherein the number of active control points in the grid is too high to be managed manually and provide an opportunity for the application of artificial intelligence technology in the power system. For power flow control, many studies have focused on using generation redispatching, load shedding, or demand side management flexibilities. This paper presents a novel reinforcement learning (RL)-based approach for the secure operation of power system via autonomous topology changes considering various constraints. The proposed agent learns from scratch to master power flow control purely from data. It can make autonomous topology changes according to current system conditions to support grid operators in making effective preventive control actions. The state-of-the-art RL algorithm—namely, dueling double deep Q-network with prioritized replay—is adopted to train effective agent for achieving the desired performance. The IEEE 14-bus system is selected to demonstrate the effectiveness and promising performance of the proposed agent controlling power network for up to a month with only nine actions affecting substation configuration.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Profili:

Avatar Url Ivana Hrgović (autor)

Avatar Url Ivica Pavić (autor)

Avatar Url Mario Brčić (autor)

Avatar Url Mate Puljiz (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Damjanović, Ivana; Pavić, Ivica; Puljiz, Mate; Brcic, Mario
Deep Reinforcement Learning-Based Approach for Autonomous Power Flow Control Using Only Topology Changes // Energies, 15 (2022), 19; 6920, 16 doi:10.3390/en15196920 (međunarodna recenzija, članak, znanstveni)
Damjanović, I., Pavić, I., Puljiz, M. & Brcic, M. (2022) Deep Reinforcement Learning-Based Approach for Autonomous Power Flow Control Using Only Topology Changes. Energies, 15 (19), 6920, 16 doi:10.3390/en15196920.
@article{article, author = {Damjanovi\'{c}, Ivana and Pavi\'{c}, Ivica and Puljiz, Mate and Brcic, Mario}, year = {2022}, pages = {16}, DOI = {10.3390/en15196920}, chapter = {6920}, keywords = {power system control, autonomous topology control, artificial intelligence, deep reinforcement learning}, journal = {Energies}, doi = {10.3390/en15196920}, volume = {15}, number = {19}, issn = {1996-1073}, title = {Deep Reinforcement Learning-Based Approach for Autonomous Power Flow Control Using Only Topology Changes}, keyword = {power system control, autonomous topology control, artificial intelligence, deep reinforcement learning}, chapternumber = {6920} }
@article{article, author = {Damjanovi\'{c}, Ivana and Pavi\'{c}, Ivica and Puljiz, Mate and Brcic, Mario}, year = {2022}, pages = {16}, DOI = {10.3390/en15196920}, chapter = {6920}, keywords = {power system control, autonomous topology control, artificial intelligence, deep reinforcement learning}, journal = {Energies}, doi = {10.3390/en15196920}, volume = {15}, number = {19}, issn = {1996-1073}, title = {Deep Reinforcement Learning-Based Approach for Autonomous Power Flow Control Using Only Topology Changes}, keyword = {power system control, autonomous topology control, artificial intelligence, deep reinforcement learning}, chapternumber = {6920} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font