Pregled bibliografske jedinice broj: 1217199
A multiscale cost–benefit analysis of digital soil mapping methods for sustainable land management
A multiscale cost–benefit analysis of digital soil mapping methods for sustainable land management // Sustainability, 14 (2022), 12170, 18 doi:10.3390/su141912170 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1217199 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A multiscale cost–benefit analysis of digital soil mapping methods for sustainable land management
(A multiscale cost–benefit analysis of digital soil mapping methods for sustainable land
management)
Autori
Radočaj, Dorijan ; Jurišić, Mladen ; Antonić, Oleg ; Šiljeg, Ante ; Cukrov, Neven ; Rapčan, Irena ; Plaščak, Ivan ; Gašparović, Mateo
Izvornik
Sustainability (2071-1050) 14
(2022);
12170, 18
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
kriging ; random forest ; analytic hierarchy process (AHP) ; environmental covariates ; prediction accuracy ; land management
Sažetak
With the emergence of machine learning methods during the past decade, alternatives to conventional geostatistical methods for soil mapping are becoming increasingly more sophisticated. To provide a complete overview of their performance, this study performed cost– benefit analysis of four soil mapping methods based on five criteria: accuracy, processing time, robustness, scalability and applicability. The evaluated methods were ordinary kriging (OK), regression kriging (RK), random forest (RF) and ensemble machine learning (EML) for the prediction of total soil carbon and nitrogen. The results of these mechanisms were objectively standardized using the linear scaling method, and their relative importance was quantified using the analytic hierarchy process (AHP). EML resulted in the highest cost–benefit score of the tested methods, with maximum values of accuracy, robustness and scalability, achieving a 55.6% higher score than the second-ranked RF method. The two geostatistical methods ranked last in the cost–benefit analysis. Despite that, OK could retain its place as the most frequent method for soil mapping in recent studies due to its widespread, user-friendly implementation in GIS software and its univariate character. Further improvement of machine learning methods with regards to computational efficiency could additionally improve their cost–benefit advantage and establish them as the universal standard for soil mapping.
Izvorni jezik
Engleski
Znanstvena područja
Interdisciplinarne tehničke znanosti, Poljoprivreda (agronomija), Interdisciplinarne biotehničke znanosti
POVEZANOST RADA
Ustanove:
Geodetski fakultet, Zagreb,
Fakultet agrobiotehničkih znanosti Osijek,
Institut "Ruđer Bošković", Zagreb,
Sveučilište u Zadru,
Sveučilište u Osijeku - Odjel za biologiju
Profili:
Irena Rapčan
(autor)
Mladen Jurišić
(autor)
Neven Cukrov
(autor)
Ivan Plaščak
(autor)
Dorijan Radočaj
(autor)
Mateo Gašparović
(autor)
Oleg Antonić
(autor)
Ante Šiljeg
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus