Pregled bibliografske jedinice broj: 1217111
Automatic Predicate Sense Disambiguation Using Syntactic and Semantic Features
Automatic Predicate Sense Disambiguation Using Syntactic and Semantic Features // Proceedings of the Conference on Language Technologies and Digital Humanities
Ljubljana, Slovenija, 2022. str. 227-234 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1217111 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Automatic Predicate Sense Disambiguation Using Syntactic and
Semantic Features
Autori
Žitko, Branko ; Bročić, Lucija ; Gašpar, Angelina ; Grubišić, Ani ; Vasić, Daniel ; Ines Šarić-Grgić
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the Conference on Language Technologies and Digital Humanities
/ - , 2022, 227-234
Skup
Language Technologies and Digital Humanities Conference
Mjesto i datum
Ljubljana, Slovenija, 15.09.2022. - 16.09.2022
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
predicate sense disambiguation ; multiple multiclass classifiers ; light verb construction
Sažetak
This paper focuses on Predicate Sense Disambiguation (PSD) based on PropBank guidelines. Different approaches to this task have been proposed, from purely supervised or knowledge-based, to recently hybrid approaches that have shown promising results. We introduce one of the hybrid approaches - a PSD pipeline based on both supervised models and handcrafted rules. To train three supervised POS, DEP and POS DEP models we used syntactic features (lemma, part-of-speech tag, dependency parse) and semantic features (semantic role labels). These features enable per-token classification, which to be applied to unseen words, requires handcrafted rules to make predictions specifically for nouns in light verb constructions, unseen verbs and unseen phrasal verbs. Experiments were done on newly- developed dataset and the results show a token-level accuracy of 96% for the proposed PSD pipeline.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
--N00014-20-1-2066 - Poboljšavanje prilagodljivog računalom oblikovanog nastavnog sadržaja temeljenog na obradi prirodnog jezika (E-AC&NL Tutor) (Grubišić, Ani) ( CroRIS)
Profili:
Angelina Gašpar
(autor)
Lucija Bročić
(autor)
Daniel Vasić
(autor)
Branko Žitko
(autor)
Ani Grubišić
(autor)
Ines Šarić-Grgić
(autor)