Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1215649

Određivanje ishodišne stanice tumora na temelju raspodjele različitih tipova mutacija


Bakšić, Ivan
Određivanje ishodišne stanice tumora na temelju raspodjele različitih tipova mutacija, 2022., diplomski rad, diplomski, Prirodoslovno-matematički fakultet, Zagreb


CROSBI ID: 1215649 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Određivanje ishodišne stanice tumora na temelju raspodjele različitih tipova mutacija
(Cell-of-origin determination based on the distribution of different mutation types in cancer)

Autori
Bakšić, Ivan

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski

Fakultet
Prirodoslovno-matematički fakultet

Mjesto
Zagreb

Datum
21.04

Godina
2022

Stranica
46

Mentor
Rosa Karlić

Ključne riječi
cell-of-origin ; tumor ; melanoma ; HBV ; VIS ; Random Forest

Sažetak
It is possible to corelate tumor with the healthy tissue it originated by using comparison of mutational landscape with chromatin marks of the normal cells. In this work I carried out research on 722 melanoma and liver carcinoma samples and on hepatitis B virus integration sites. The goal of this research was to determine COO correlations between chromatin marks and single nucleotide variance, insertions and deletions and hepatitis B integration sites using the Random Forest regression analysis. Moreover, this work provides methodological research with the goal of improving cell-of-origin determination and observing the effect of different mutation number on the quality of the prediction. It was proven that the melanoma single nucleotide variance frequency is higher in open chromatin regions and that it was possible to considerably increase prediction power by outlier exclusion. It was also determined that liver carcinoma single nucleotide variance data, insertion and deletion data and virus integration site data used in this work do not provide accurate nor reliable cell-of-origin prediction. Finally, it was determined how usage of considerably lower number of mutations does not necessarily lower the prediction power of the cell-of origin.

Izvorni jezik
Engleski

Znanstvena područja
Biologija



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-9308 - Predviđanje ishodišnih stanica i istraživanje mehanizama razvoja raka bazirano na statističkom modeliranju (PREDI-COO) (Karlić, Rosa, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Rosa Karlić (mentor)

Poveznice na cjeloviti tekst rada:

repozitorij.pmf.unizg.hr urn.nsk.hr

Citiraj ovu publikaciju:

Bakšić, Ivan
Određivanje ishodišne stanice tumora na temelju raspodjele različitih tipova mutacija, 2022., diplomski rad, diplomski, Prirodoslovno-matematički fakultet, Zagreb
Bakšić, I. (2022) 'Određivanje ishodišne stanice tumora na temelju raspodjele različitih tipova mutacija', diplomski rad, diplomski, Prirodoslovno-matematički fakultet, Zagreb.
@phdthesis{phdthesis, author = {Bak\v{s}i\'{c}, Ivan}, year = {2022}, pages = {46}, keywords = {cell-of-origin, tumor, melanoma, HBV, VIS, Random Forest}, title = {Odre\djivanje ishodi\v{s}ne stanice tumora na temelju raspodjele razli\v{c}itih tipova mutacija}, keyword = {cell-of-origin, tumor, melanoma, HBV, VIS, Random Forest}, publisherplace = {Zagreb} }
@phdthesis{phdthesis, author = {Bak\v{s}i\'{c}, Ivan}, year = {2022}, pages = {46}, keywords = {cell-of-origin, tumor, melanoma, HBV, VIS, Random Forest}, title = {Cell-of-origin determination based on the distribution of different mutation types in cancer}, keyword = {cell-of-origin, tumor, melanoma, HBV, VIS, Random Forest}, publisherplace = {Zagreb} }




Contrast
Increase Font
Decrease Font
Dyslexic Font