Pregled bibliografske jedinice broj: 1215649
Određivanje ishodišne stanice tumora na temelju raspodjele različitih tipova mutacija
Određivanje ishodišne stanice tumora na temelju raspodjele različitih tipova mutacija, 2022., diplomski rad, diplomski, Prirodoslovno-matematički fakultet, Zagreb
CROSBI ID: 1215649 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Određivanje ishodišne stanice tumora na temelju
raspodjele različitih tipova mutacija
(Cell-of-origin determination based on the
distribution of different mutation types in cancer)
Autori
Bakšić, Ivan
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Prirodoslovno-matematički fakultet
Mjesto
Zagreb
Datum
21.04
Godina
2022
Stranica
46
Mentor
Rosa Karlić
Ključne riječi
cell-of-origin ; tumor ; melanoma ; HBV ; VIS ; Random Forest
Sažetak
It is possible to corelate tumor with the healthy tissue it originated by using comparison of mutational landscape with chromatin marks of the normal cells. In this work I carried out research on 722 melanoma and liver carcinoma samples and on hepatitis B virus integration sites. The goal of this research was to determine COO correlations between chromatin marks and single nucleotide variance, insertions and deletions and hepatitis B integration sites using the Random Forest regression analysis. Moreover, this work provides methodological research with the goal of improving cell-of-origin determination and observing the effect of different mutation number on the quality of the prediction. It was proven that the melanoma single nucleotide variance frequency is higher in open chromatin regions and that it was possible to considerably increase prediction power by outlier exclusion. It was also determined that liver carcinoma single nucleotide variance data, insertion and deletion data and virus integration site data used in this work do not provide accurate nor reliable cell-of-origin prediction. Finally, it was determined how usage of considerably lower number of mutations does not necessarily lower the prediction power of the cell-of origin.
Izvorni jezik
Engleski
Znanstvena područja
Biologija
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-9308 - Predviđanje ishodišnih stanica i istraživanje mehanizama razvoja raka bazirano na statističkom modeliranju (PREDI-COO) (Karlić, Rosa, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Rosa Karlić
(mentor)