Pregled bibliografske jedinice broj: 1214864
Generation of Artificial CT Images using Patch-based Conditional Generative Adversarial Networks
Generation of Artificial CT Images using Patch-based Conditional Generative Adversarial Networks // 7th International Conference on Smart and Sustainable Technologies (SpliTech)
Bol, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-5 doi:10.23919/splitech55088.2022.9854249 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1214864 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Generation of Artificial CT Images using Patch-based
Conditional Generative Adversarial Networks
Autori
Habijan, Marija ; Galic, Irena
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Skup
7th International Conference on Smart and Sustainable Technologies (SpliTech)
Mjesto i datum
Bol, Hrvatska, 05.07.2022. - 08.07.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
conditional generative adversarial networks ; CT ; deep learning ; generative adversarial networks ; medical image generation ; unsupervised deep learning
Sažetak
Deep learning has a great potential to alleviate diagnosis and prognosis for various clinical procedures. However, the lack of a sufficient number of medical images is the most common obstacle in conducting image-based analysis using deep learning. Due to the annotations scarcity, semi-supervised techniques in the automatic medical analysis are getting high attention. Artificial data augmentation and generation techniques such as generative adversarial networks (GANs) may help overcome this obstacle. In this work, we present an image generation approach that uses generative adversarial networks with a conditional discriminator where segmentation masks are used as conditions for image generation. We validate the feasibility of GAN-enhanced medical image generation on whole heart computed tomography (CT) images and its seven substructures, namely: left ventricle, right ventricle, left atrium, right atrium, myocardium, pulmonary arteries, and aorta. Obtained results demonstrate the suitability of the proposed adversarial approach for the accurate generation of high-quality CT images. The presented method shows great potential to facilitate further research in the domain of artificial medical image generation.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
UIP-2017-05-4968 - Metode za interpretaciju medicinskih snimki za detaljnu analizu zdravlja srca (IMAGINEHEART) (Galić, Irena, HRZZ - 2017-05) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek