Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1214589

GIS-based cropland suitability prediction using machine learning: A novel approach to sustainable agricultural production


Radočaj, Dorijan; Jurišić, Mladen
GIS-based cropland suitability prediction using machine learning: A novel approach to sustainable agricultural production // Agronomy, 12 (2022), 9; 2210, 15 doi:10.3390/agronomy12092210 (međunarodna recenzija, pregledni rad, znanstveni)


CROSBI ID: 1214589 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
GIS-based cropland suitability prediction using machine learning: A novel approach to sustainable agricultural production
(GIS-based cropland suitability prediction using machine learning: A novel approach to sustainable agricultural production)

Autori
Radočaj, Dorijan ; Jurišić, Mladen

Izvornik
Agronomy (2073-4395) 12 (2022), 9; 2210, 15

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, znanstveni

Ključne riječi
farmland ; geographic information system ; vegetation index ; biophysical variables ; Sentinel-2 ; analytic hierarchy process

Sažetak
The increasing global demand for food has forced farmers to produce higher crop yields in order to keep up with population growth, while maintaining sustainable production for the environment. As knowledge about natural cropland suitability is mandatory to achieve this, the aim of this paper is to provide a review of methods for suitability prediction according to abiotic environmental criteria. The conventional method for calculating cropland suitability in previous studies was a geographic information system (GIS)-based multicriteria analysis, dominantly in combination with the analytic hierarchy process (AHP). Although this is a flexible and widely accepted method, it has significant fundamental drawbacks, such as a lack of accuracy assessment, high subjectivity, computational inefficiency, and an unsystematic approach to selecting environmental criteria. To improve these drawbacks, methods for determining cropland suitability based on machine learning have been developed in recent studies. These novel methods contribute to an important paradigm shift when determining cropland suitability, being objective, automated, computationally efficient, and viable for widespread global use due to the availability of open data sources on a global scale. Nevertheless, both approaches produce invaluable complimentary benefits to cropland management planning, with novel methods being more appropriate for major crops and conventional methods more appropriate for less frequent crops.

Izvorni jezik
Engleski

Znanstvena područja
Interdisciplinarne tehničke znanosti, Poljoprivreda (agronomija), Interdisciplinarne biotehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet agrobiotehničkih znanosti Osijek

Profili:

Avatar Url Mladen Jurišić (autor)

Avatar Url Dorijan Radočaj (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Radočaj, Dorijan; Jurišić, Mladen
GIS-based cropland suitability prediction using machine learning: A novel approach to sustainable agricultural production // Agronomy, 12 (2022), 9; 2210, 15 doi:10.3390/agronomy12092210 (međunarodna recenzija, pregledni rad, znanstveni)
Radočaj, D. & Jurišić, M. (2022) GIS-based cropland suitability prediction using machine learning: A novel approach to sustainable agricultural production. Agronomy, 12 (9), 2210, 15 doi:10.3390/agronomy12092210.
@article{article, author = {Rado\v{c}aj, Dorijan and Juri\v{s}i\'{c}, Mladen}, year = {2022}, pages = {15}, DOI = {10.3390/agronomy12092210}, chapter = {2210}, keywords = {farmland, geographic information system, vegetation index, biophysical variables, Sentinel-2, analytic hierarchy process}, journal = {Agronomy}, doi = {10.3390/agronomy12092210}, volume = {12}, number = {9}, issn = {2073-4395}, title = {GIS-based cropland suitability prediction using machine learning: A novel approach to sustainable agricultural production}, keyword = {farmland, geographic information system, vegetation index, biophysical variables, Sentinel-2, analytic hierarchy process}, chapternumber = {2210} }
@article{article, author = {Rado\v{c}aj, Dorijan and Juri\v{s}i\'{c}, Mladen}, year = {2022}, pages = {15}, DOI = {10.3390/agronomy12092210}, chapter = {2210}, keywords = {farmland, geographic information system, vegetation index, biophysical variables, Sentinel-2, analytic hierarchy process}, journal = {Agronomy}, doi = {10.3390/agronomy12092210}, volume = {12}, number = {9}, issn = {2073-4395}, title = {GIS-based cropland suitability prediction using machine learning: A novel approach to sustainable agricultural production}, keyword = {farmland, geographic information system, vegetation index, biophysical variables, Sentinel-2, analytic hierarchy process}, chapternumber = {2210} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font