Pregled bibliografske jedinice broj: 1214513
On the Voronoi Conjecture for combinatorially Voronoi parallelohedra
On the Voronoi Conjecture for combinatorially Voronoi parallelohedra // SIAM journal on discrete mathematics, 34 (2020), 4; 2481-2501 doi:10.1137/18M1235004 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1214513 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the Voronoi Conjecture for combinatorially
Voronoi parallelohedra
Autori
Dutour Sikirić, Mathieu ; Garber, Alexey ; Magazinov, Alexander
Izvornik
SIAM journal on discrete mathematics (0895-4801) 34
(2020), 4;
2481-2501
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Voronoi Conjecture ; Voronoi polytope ; enumeration
Sažetak
In a recent paper Garber, Gavrilyuk and Magazinov proposed a sufficient combinatorial condition for a parallelohedron to be affinely Voronoi. We show that this condition holds for all five-dimensional Voronoi parallelohedra. Consequently, the Voronoi conjecture in R^5 holds if and only if every five-dimensional parallelohedron is combinatorially Voronoi. Here, by saying that a parallelohedron P is combinatorial Voronoi, we mean that the tiling T(P) by translates of P is combinatorially isomorphic to some tiling T(P'), where P' is a Voronoi parallelohedron, and that the isomorphism naturally induces a linear isomorphism of lattices Lambda(P) and Lambda(P'). We also propose a new sufficient condition implying that a parallelohedron is affinely Voronoi. The condition is based on the new notion of the Venkov complex associated with a parallelohedron.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus