Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1214429

PhytoNodes for Environmental Monitoring: Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System


Buss, Eduard; Rabbel, Tim-Lucas; Horvat, Viktor; Krizmancic, Marko; Bogdan, Stjepan; Wahby, Mostafa; Hamann, Heiko
PhytoNodes for Environmental Monitoring: Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System // Proceedings of the 2022 ACM Conference on Information Technology for Social Good
New York (NY): The Association for Computing Machinery (ACM), 2022. str. 258-264 doi:10.1145/3524458.3547266 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1214429 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
PhytoNodes for Environmental Monitoring: Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System

Autori
Buss, Eduard ; Rabbel, Tim-Lucas ; Horvat, Viktor ; Krizmancic, Marko ; Bogdan, Stjepan ; Wahby, Mostafa ; Hamann, Heiko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2022 ACM Conference on Information Technology for Social Good / - New York (NY) : The Association for Computing Machinery (ACM), 2022, 258-264

ISBN
9781450392846

Skup
ACM International Conference on Information Technology for Social Good (GoodIT 2018)

Mjesto i datum
Limassol, Cipar, 07.09.2022. - 09.09.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
stimulus classification ; phytosensing ; biopotential ; neural networks

Sažetak
Cities worldwide are growing, putting bigger populations at risk due to urban pollution. Environmental monitoring is essential and requires a major paradigm shift. We need green and inexpensive means of measuring at high sensor densities and with high user acceptance. We propose using phytosensing: using natural living plants as sensors. In plant experiments, we gather electrophysiological data with sensor nodes. We expose the plant Zamioculcas zamiifolia to five different stimuli: wind, temperature, blue light, red light, or no stimulus. Using that data, we train ten different types of artificial neural networks to classify measured time series according to the respective stimulus. We achieve good accuracy and succeed in running trained classifying artificial neural networks online on the microcontroller of our small energy-efficient sensor node. To indicate later possible use cases, we showcase the system by sending a notification to a smartphone application once our continuous signal analysis detects a given stimulus.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Interdisciplinarne biotehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Stjepan Bogdan (autor)

Avatar Url Marko Križmančić (autor)

Poveznice na cjeloviti tekst rada:

doi dl.acm.org

Poveznice na istraživačke podatke:

doi.org

Citiraj ovu publikaciju:

Buss, Eduard; Rabbel, Tim-Lucas; Horvat, Viktor; Krizmancic, Marko; Bogdan, Stjepan; Wahby, Mostafa; Hamann, Heiko
PhytoNodes for Environmental Monitoring: Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System // Proceedings of the 2022 ACM Conference on Information Technology for Social Good
New York (NY): The Association for Computing Machinery (ACM), 2022. str. 258-264 doi:10.1145/3524458.3547266 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Buss, E., Rabbel, T., Horvat, V., Krizmancic, M., Bogdan, S., Wahby, M. & Hamann, H. (2022) PhytoNodes for Environmental Monitoring: Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System. U: Proceedings of the 2022 ACM Conference on Information Technology for Social Good doi:10.1145/3524458.3547266.
@article{article, author = {Buss, Eduard and Rabbel, Tim-Lucas and Horvat, Viktor and Krizmancic, Marko and Bogdan, Stjepan and Wahby, Mostafa and Hamann, Heiko}, year = {2022}, pages = {258-264}, DOI = {10.1145/3524458.3547266}, keywords = {stimulus classification, phytosensing, biopotential, neural networks}, doi = {10.1145/3524458.3547266}, isbn = {9781450392846}, title = {PhytoNodes for Environmental Monitoring: Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System}, keyword = {stimulus classification, phytosensing, biopotential, neural networks}, publisher = {The Association for Computing Machinery (ACM)}, publisherplace = {Limassol, Cipar} }
@article{article, author = {Buss, Eduard and Rabbel, Tim-Lucas and Horvat, Viktor and Krizmancic, Marko and Bogdan, Stjepan and Wahby, Mostafa and Hamann, Heiko}, year = {2022}, pages = {258-264}, DOI = {10.1145/3524458.3547266}, keywords = {stimulus classification, phytosensing, biopotential, neural networks}, doi = {10.1145/3524458.3547266}, isbn = {9781450392846}, title = {PhytoNodes for Environmental Monitoring: Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System}, keyword = {stimulus classification, phytosensing, biopotential, neural networks}, publisher = {The Association for Computing Machinery (ACM)}, publisherplace = {Limassol, Cipar} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font