Pregled bibliografske jedinice broj: 1214283
Picking out the bad apples: unsupervised biometric data filtering for refined age estimation
Picking out the bad apples: unsupervised biometric data filtering for refined age estimation // The Visual Computer, 39 (2022), 219-237 doi:10.1007/s00371-021-02323-y (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1214283 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Picking out the bad apples: unsupervised biometric
data filtering for refined age estimation
Autori
Bešenić, Krešimir ; Ahlberg, Jörgen ; Pandžić, Igor S.
Izvornik
The Visual Computer (0178-2789) 39
(2022);
219-237
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Filtering · Biometric · Unsupervised, Web scraping, Age estimation, Dataset design
Sažetak
Introduction of large training datasets was essential for the recent advancement and success of deep learning methods. Due to the difficulties related to biometric data collection, facial image datasets with biometric trait labels are scarce and usually limited in terms of size and sample diversity. Web-scraping approaches for automatic data collection can produce large amounts of weakly labeled and noisy data. This work is focused on picking out the bad apples from web- scraped facial datasets by automatically removing erroneous samples that impair their usability. The unsupervised facial biometric data filtering method presented in this work greatly reduces label noise levels in web-scraped facial biometric data. Experiments on two large state-of-the-art web-scraped datasets demonstrate the effectiveness of the proposed method with respect to real and apparent age estimation based on five different age estimation methods. Furthermore, we apply the proposed method, together with a newly devised strategy for merging multiple datasets, to data collected from three major web-based data sources (i.e., IMDb, Wikipedia, Google) and derive the new Biometrically Filtered Famous Figure Dataset or B3FD. The proposed dataset, which is made publicly available, enables considerable performance gains for all tested age estimation methods and age estimation tasks. This work highlights the importance of training data quality compared to data quantity and selection of the estimation method.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Poveznice na cjeloviti tekst rada:
doi rdcu.be link.springer.comPoveznice na istraživačke podatke:
github.comCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus