Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1214283

Picking out the bad apples: unsupervised biometric data filtering for refined age estimation


Bešenić, Krešimir; Ahlberg, Jörgen; Pandžić, Igor S.
Picking out the bad apples: unsupervised biometric data filtering for refined age estimation // The Visual Computer, 39 (2022), 219-237 doi:10.1007/s00371-021-02323-y (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1214283 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Picking out the bad apples: unsupervised biometric data filtering for refined age estimation

Autori
Bešenić, Krešimir ; Ahlberg, Jörgen ; Pandžić, Igor S.

Izvornik
The Visual Computer (0178-2789) 39 (2022); 219-237

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Filtering · Biometric · Unsupervised, Web scraping, Age estimation, Dataset design

Sažetak
Introduction of large training datasets was essential for the recent advancement and success of deep learning methods. Due to the difficulties related to biometric data collection, facial image datasets with biometric trait labels are scarce and usually limited in terms of size and sample diversity. Web-scraping approaches for automatic data collection can produce large amounts of weakly labeled and noisy data. This work is focused on picking out the bad apples from web- scraped facial datasets by automatically removing erroneous samples that impair their usability. The unsupervised facial biometric data filtering method presented in this work greatly reduces label noise levels in web-scraped facial biometric data. Experiments on two large state-of-the-art web-scraped datasets demonstrate the effectiveness of the proposed method with respect to real and apparent age estimation based on five different age estimation methods. Furthermore, we apply the proposed method, together with a newly devised strategy for merging multiple datasets, to data collected from three major web-based data sources (i.e., IMDb, Wikipedia, Google) and derive the new Biometrically Filtered Famous Figure Dataset or B3FD. The proposed dataset, which is made publicly available, enables considerable performance gains for all tested age estimation methods and age estimation tasks. This work highlights the importance of training data quality compared to data quantity and selection of the estimation method.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi rdcu.be link.springer.com

Poveznice na istraživačke podatke:

github.com

Citiraj ovu publikaciju:

Bešenić, Krešimir; Ahlberg, Jörgen; Pandžić, Igor S.
Picking out the bad apples: unsupervised biometric data filtering for refined age estimation // The Visual Computer, 39 (2022), 219-237 doi:10.1007/s00371-021-02323-y (međunarodna recenzija, članak, znanstveni)
Bešenić, K., Ahlberg, J. & Pandžić, I. (2022) Picking out the bad apples: unsupervised biometric data filtering for refined age estimation. The Visual Computer, 39, 219-237 doi:10.1007/s00371-021-02323-y.
@article{article, author = {Be\v{s}eni\'{c}, Kre\v{s}imir and Ahlberg, J\"{o}rgen and Pand\v{z}i\'{c}, Igor S.}, year = {2022}, pages = {219-237}, DOI = {10.1007/s00371-021-02323-y}, keywords = {Filtering · Biometric · Unsupervised, Web scraping, Age estimation, Dataset design}, journal = {The Visual Computer}, doi = {10.1007/s00371-021-02323-y}, volume = {39}, issn = {0178-2789}, title = {Picking out the bad apples: unsupervised biometric data filtering for refined age estimation}, keyword = {Filtering · Biometric · Unsupervised, Web scraping, Age estimation, Dataset design} }
@article{article, author = {Be\v{s}eni\'{c}, Kre\v{s}imir and Ahlberg, J\"{o}rgen and Pand\v{z}i\'{c}, Igor S.}, year = {2022}, pages = {219-237}, DOI = {10.1007/s00371-021-02323-y}, keywords = {Filtering · Biometric · Unsupervised, Web scraping, Age estimation, Dataset design}, journal = {The Visual Computer}, doi = {10.1007/s00371-021-02323-y}, volume = {39}, issn = {0178-2789}, title = {Picking out the bad apples: unsupervised biometric data filtering for refined age estimation}, keyword = {Filtering · Biometric · Unsupervised, Web scraping, Age estimation, Dataset design} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font