Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1213703

Co-simulation framework for estimating the rotor bar currents of a cage induction motor using FEA and ANN


Barukčić, Marinko; Varga, Toni; Jerković Štil, Vedrana; Benšić, Tin
Co-simulation framework for estimating the rotor bar currents of a cage induction motor using FEA and ANN // Proceedings on International Conference on Electrical, Computer and Energy Technologies (ICECET 2022)
Prag, Češka Republika: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-6 doi:10.1109/icecet55527.2022.9872604 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1213703 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Co-simulation framework for estimating the rotor bar currents of a cage induction motor using FEA and ANN

Autori
Barukčić, Marinko ; Varga, Toni ; Jerković Štil, Vedrana ; Benšić, Tin

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings on International Conference on Electrical, Computer and Energy Technologies (ICECET 2022) / - : Institute of Electrical and Electronics Engineers (IEEE), 2022, 1-6

ISBN
978-1-6654-7087-2

Skup
International Conference on Electrical, Computer and Energy Technologies (ICECET 2022)

Mjesto i datum
Prag, Češka Republika, 20.07.2022. - 22.07.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
artificial neural network ; cage induction motor ; co-simulation ; estimation ; finite element analysis ; rotor bar current

Sažetak
The paper presents a research work on the estimation of rotor bar currents of a squirrel- cage induction motor (IM). The main objective of the research conducted is to investigate whether it is possible to estimate the values of IM rotor bar current with artificial neural network (ANN) with satisfactory accuracy. Another objective of the study is to investigate the generality of such bar current estimation for different operating conditions of the motor. For this purpose, different designs of ANN are also investigated. The method is based on the application of a finite element analysis simulation tool to determine rotor current values under transient and steady state conditions. The ANN based estimation method uses the standard measurable data of stator current and rotor speed. In the next step of the proposed method, the calculated rotor current values are used to train an artificial neural network. Based on this approach, the presented method represents a data-based estimation model. After the ANN is trained, ANN is tested on motor transients that are different from those used in learning the artificial neural network. Data from a real motor is used for the study. The three different ANN designs are examined in the study. The values of the loss function (mean square error, used in the ANN training process) are (for normalized data) 0.0013, 0.0013, and 0.0014 (during ANN training) and 0.0038, 0.0035 (ANN prediction for new input data) for the proposed designs ANN 1, ANN 2, and ANN 3.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
UIP-2017-05-8572 - Razvoj postupaka kosimulacija programskih alata za primjenu mekog računarstva u elektroenergetici (COPESOC) (Barukčić, Marinko, HRZZ - 2017-05) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Vedrana Jerković (autor)

Avatar Url Marinko Barukčić (autor)

Avatar Url Tin Benšić (autor)

Avatar Url Toni Varga (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Barukčić, Marinko; Varga, Toni; Jerković Štil, Vedrana; Benšić, Tin
Co-simulation framework for estimating the rotor bar currents of a cage induction motor using FEA and ANN // Proceedings on International Conference on Electrical, Computer and Energy Technologies (ICECET 2022)
Prag, Češka Republika: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-6 doi:10.1109/icecet55527.2022.9872604 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Barukčić, M., Varga, T., Jerković Štil, V. & Benšić, T. (2022) Co-simulation framework for estimating the rotor bar currents of a cage induction motor using FEA and ANN. U: Proceedings on International Conference on Electrical, Computer and Energy Technologies (ICECET 2022) doi:10.1109/icecet55527.2022.9872604.
@article{article, author = {Baruk\v{c}i\'{c}, Marinko and Varga, Toni and Jerkovi\'{c} \v{S}til, Vedrana and Ben\v{s}i\'{c}, Tin}, year = {2022}, pages = {1-6}, DOI = {10.1109/icecet55527.2022.9872604}, keywords = {artificial neural network, cage induction motor, co-simulation, estimation, finite element analysis, rotor bar current}, doi = {10.1109/icecet55527.2022.9872604}, isbn = {978-1-6654-7087-2}, title = {Co-simulation framework for estimating the rotor bar currents of a cage induction motor using FEA and ANN}, keyword = {artificial neural network, cage induction motor, co-simulation, estimation, finite element analysis, rotor bar current}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Prag, \v{C}e\v{s}ka Republika} }
@article{article, author = {Baruk\v{c}i\'{c}, Marinko and Varga, Toni and Jerkovi\'{c} \v{S}til, Vedrana and Ben\v{s}i\'{c}, Tin}, year = {2022}, pages = {1-6}, DOI = {10.1109/icecet55527.2022.9872604}, keywords = {artificial neural network, cage induction motor, co-simulation, estimation, finite element analysis, rotor bar current}, doi = {10.1109/icecet55527.2022.9872604}, isbn = {978-1-6654-7087-2}, title = {Co-simulation framework for estimating the rotor bar currents of a cage induction motor using FEA and ANN}, keyword = {artificial neural network, cage induction motor, co-simulation, estimation, finite element analysis, rotor bar current}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Prag, \v{C}e\v{s}ka Republika} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font