Pregled bibliografske jedinice broj: 1213382
The Prediction of Added Resistance in Waves at the Preliminary Design Phase of a Container Ship Based on an Artificial Neural Network
The Prediction of Added Resistance in Waves at the Preliminary Design Phase of a Container Ship Based on an Artificial Neural Network // Proceedings of the 25th Symposium on Theory and Practice of Shipbuilding, In Memoriam prof. Leopold Sorta (SORTA 2022) / Degiuli, Nastia ; Martić, Ivana ; Farkas, Andrea (ur.).
Zagreb: Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, 2022. str. 5-6 (predavanje, domaća recenzija, prošireni sažetak, znanstveni)
CROSBI ID: 1213382 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Prediction of Added Resistance in Waves at the Preliminary Design Phase of a Container Ship Based on an Artificial Neural Network
Autori
Martić, Ivana ; Degiuli, Nastia ; Farkas, Andrea ; Carlo Giorgio Grlj
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, prošireni sažetak, znanstveni
Izvornik
Proceedings of the 25th Symposium on Theory and Practice of Shipbuilding, In Memoriam prof. Leopold Sorta (SORTA 2022)
/ Degiuli, Nastia ; Martić, Ivana ; Farkas, Andrea - Zagreb : Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu, 2022, 5-6
ISBN
978-953-7738-86-0
Skup
25th Symposium on Theory and Practice of Shipbuilding, In Memoriam prof. Leopold Sorta (SORTA 2022)
Mjesto i datum
Malinska, Hrvatska, 07.09.2022. - 10.09.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
Added resistance in waves ; Artificial neural network ; Container ship
Sažetak
A model based on Artificial Neural Network (ANN) that allows simple but sufficiently accurate and reliable evaluation of the ship added resistance in regular head waves is proposed for container ships. The results of added resistance in waves, obtained by performing hydrodynamic calculations based on the Boundary Integral Element Method (BIEM), are used to train and test the generalization ability of ANN.
Izvorni jezik
Engleski
Znanstvena područja
Brodogradnja
POVEZANOST RADA
Projekti:
--IP-2020-02-8568 - Održiva plovidba smanjenom brzinom za nisko-ugljično brodarstvo (STARSHIP) (Degiuli, Nastia) ( CroRIS)
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb
Profili:
Carlo Giorgio Grlj
(autor)
Nastia Degiuli
(autor)
Andrea Farkas
(autor)
Ivana Martić
(autor)