Pregled bibliografske jedinice broj: 1212959
Tag Estimation Method for ALOHA RFID System Based on Machine Learning Classifiers
Tag Estimation Method for ALOHA RFID System Based on Machine Learning Classifiers // Electronics (Basel), 11 (2022), 16; 2605, 20 doi:10.3390/electronics11162605 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1212959 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Tag Estimation Method for ALOHA RFID System Based on
Machine Learning Classifiers
Autori
Dujić Rodić, Lea ; ; Stančić, Ivo. ; Zovko, Kristina ; Perković, Toni ; Šolić, Petar
Izvornik
Electronics (Basel) (2079-9292) 11
(2022), 16;
2605, 20
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Internet of Things ; RFID tags, RFID reader ; Machine Learning ; tag estimate method ; microcontroller
Sažetak
In the last two decades, Radio Frequency Identification (RFID) technology has attained prominent performance improvement and has been recognised as one of the key enablers of the Internet of Things (IoT) concepts. In parallel, extensive employment of Machine Learning (ML) algorithms in diverse IoT areas has led to numerous advantages that increase successful utilization in different scenarios. The work presented in this paper provides a use-case feasibility analysis of the implementation of ML algorithms for the estimation of ALOHA-based frame size in the RIFD Gen2 system. Findings presented in this research indicate that the examined ML algorithms can be deployed on modern state-of-the-art resource- constrained micro-controllers enhancing system throughput. In addition, such utilisation can cope with latency since the execution time is sufficient to meet protocol needs.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
UIP-2017-05-4206 - Internet stvari: istraživanja i primjene (IoTRA) (Šolić, Petar, HRZZ - 2017-05) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Profili:
Ivo Stančić
(autor)
Toni Perković
(autor)
Lea Dujić Rodić
(autor)
Petar Šolić
(autor)
Kristina Zovko
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus