Pregled bibliografske jedinice broj: 1212504
Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach
Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach // Mathematics, 10 (2022), 16; 2939, 23 doi:10.3390/math10162939 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1212504 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach
Autori
Hržić, Franko ; Tschauner, Sebastian ; Sorantin, Erich ; Štajduhar, Ivan
Izvornik
Mathematics (2227-7390) 10
(2022), 16;
2939, 23
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
paediatric radiology ; wrist fracture detection ; X-ray ; YOLOv4 ; diagnostics
Sažetak
Wrist fractures are commonly diagnosed using X-ray imaging, supplemented by magnetic resonance imaging and computed tomography when required. Radiologists can sometimes overlook the fractures because they are difficult to spot. In contrast, some fractures can be easily spotted and only slow down the radiologists because of the reporting systems. We propose a machine learning model based on the YOLOv4 method that can help solve these issues. The rigorous testing on three levels showed that the YOLOv4-based model obtained significantly better results in comparison to the state-of-the-art method based on the U-Net model. In the comparison against five radiologists, YOLO 512 Anchor model-AI (the best performing YOLOv4-based model) was significantly better than the four radiologists (AI AUC-ROC =0.965, Radiologist average AUC-ROC =0.831±0.075). Furthermore, we have shown that three out of five radiologists significantly improved their performance when aided by the AI model. Finally, we compared our work with other related work and discussed what to consider when building an ML-based predictive model for wrist fracture detection. All our findings are based on a complex dataset of 19, 700 pediatric X-ray images.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Interdisciplinarne biotehničke znanosti, Interdisciplinarne društvene znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-3770 - Strojno učenje za prijenos znanja u medicinskoj radiologiji (RadiologyNET) (Štajduhar, Ivan, HRZZ - 2020-02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-15 - Razvoj postupaka temeljenih na strojnom učenju za prepoznavanje bolesti i ozljeda iz medicinskih slika (Štajduhar, Ivan, NadSve ) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus