Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1212504

Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach


Hržić, Franko; Tschauner, Sebastian; Sorantin, Erich; Štajduhar, Ivan
Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach // Mathematics, 10 (2022), 16; 2939, 23 doi:10.3390/math10162939 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1212504 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach

Autori
Hržić, Franko ; Tschauner, Sebastian ; Sorantin, Erich ; Štajduhar, Ivan

Izvornik
Mathematics (2227-7390) 10 (2022), 16; 2939, 23

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
paediatric radiology ; wrist fracture detection ; X-ray ; YOLOv4 ; diagnostics

Sažetak
Wrist fractures are commonly diagnosed using X-ray imaging, supplemented by magnetic resonance imaging and computed tomography when required. Radiologists can sometimes overlook the fractures because they are difficult to spot. In contrast, some fractures can be easily spotted and only slow down the radiologists because of the reporting systems. We propose a machine learning model based on the YOLOv4 method that can help solve these issues. The rigorous testing on three levels showed that the YOLOv4-based model obtained significantly better results in comparison to the state-of-the-art method based on the U-Net model. In the comparison against five radiologists, YOLO 512 Anchor model-AI (the best performing YOLOv4-based model) was significantly better than the four radiologists (AI AUC-ROC =0.965, Radiologist average AUC-ROC =0.831±0.075). Furthermore, we have shown that three out of five radiologists significantly improved their performance when aided by the AI model. Finally, we compared our work with other related work and discussed what to consider when building an ML-based predictive model for wrist fracture detection. All our findings are based on a complex dataset of 19, 700 pediatric X-ray images.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Interdisciplinarne biotehničke znanosti, Interdisciplinarne društvene znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2020-02-3770 - Strojno učenje za prijenos znanja u medicinskoj radiologiji (RadiologyNET) (Štajduhar, Ivan, HRZZ - 2020-02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-15 - Razvoj postupaka temeljenih na strojnom učenju za prepoznavanje bolesti i ozljeda iz medicinskih slika (Štajduhar, Ivan, NadSve ) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Franko Hržić (autor)

Avatar Url Ivan Štajduhar (autor)

Poveznice na cjeloviti tekst rada:

doi doi.org doi.org

Poveznice na istraživačke podatke:


Citiraj ovu publikaciju:

Hržić, Franko; Tschauner, Sebastian; Sorantin, Erich; Štajduhar, Ivan
Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach // Mathematics, 10 (2022), 16; 2939, 23 doi:10.3390/math10162939 (međunarodna recenzija, članak, znanstveni)
Hržić, F., Tschauner, S., Sorantin, E. & Štajduhar, I. (2022) Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach. Mathematics, 10 (16), 2939, 23 doi:10.3390/math10162939.
@article{article, author = {Hr\v{z}i\'{c}, Franko and Tschauner, Sebastian and Sorantin, Erich and \v{S}tajduhar, Ivan}, year = {2022}, pages = {23}, DOI = {10.3390/math10162939}, chapter = {2939}, keywords = {paediatric radiology, wrist fracture detection, X-ray, YOLOv4, diagnostics}, journal = {Mathematics}, doi = {10.3390/math10162939}, volume = {10}, number = {16}, issn = {2227-7390}, title = {Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach}, keyword = {paediatric radiology, wrist fracture detection, X-ray, YOLOv4, diagnostics}, chapternumber = {2939} }
@article{article, author = {Hr\v{z}i\'{c}, Franko and Tschauner, Sebastian and Sorantin, Erich and \v{S}tajduhar, Ivan}, year = {2022}, pages = {23}, DOI = {10.3390/math10162939}, chapter = {2939}, keywords = {paediatric radiology, wrist fracture detection, X-ray, YOLOv4, diagnostics}, journal = {Mathematics}, doi = {10.3390/math10162939}, volume = {10}, number = {16}, issn = {2227-7390}, title = {Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach}, keyword = {paediatric radiology, wrist fracture detection, X-ray, YOLOv4, diagnostics}, chapternumber = {2939} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font