Pregled bibliografske jedinice broj: 1212502
Intersection Traffic State Estimation using Speed Transition Matrix and Fuzzy-based Systems
Intersection Traffic State Estimation using Speed Transition Matrix and Fuzzy-based Systems // Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics - ICINCO / Gini, Giuseppina ; Nijmeijer, Henk ; Burgard, Wolfram ; Filev, Dimitar (ur.).
Lisabon, 2022. str. 193-200 doi:10.5220/0011275500003271 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1212502 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Intersection Traffic State Estimation using Speed
Transition Matrix and Fuzzy-based Systems
Autori
Majstorović, Željko ; Tišljarić, Leo ; Ivanjko, Edouard ; Carić, Tonči
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics - ICINCO
/ Gini, Giuseppina ; Nijmeijer, Henk ; Burgard, Wolfram ; Filev, Dimitar - Lisabon, 2022, 193-200
ISBN
978-989-758-585-2
Skup
19th International Conference on Informatics in Control, Automation and Robotics (ICINCO)
Mjesto i datum
Lisabon, Portugal, 14.07.2022. - 16.07.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Intersection State Estimation, Bottleneck Detection, Connected Vehicles, Fuzzy-based System, Speed Transition Matrix.
Sažetak
Urban traffic congestion is a significant problem for almost every city, affecting various aspects of life. Besides increasing travel time, congestion also affects air and life quality causing economic losses. The construction of infrastructure to solve congestion problems is not always feasible, and, at the end, attracts only additional traffic demand. Thus, a better approach for solving the problem of city congestion is by optimal management of the existing infrastructure. Timely detection of traffic congestion on the road level can prevent congestion formation and even improve road network capacity when used for appropriate traffic control actions. Detecting congestion is a complex process that depends on available traffic data. In this paper, for traffic state estimation, including congestion level, at the intersection level, a new method based on Speed Transition Matrix and Fuzzy-Based System is presented. The proposed method utilizes the Connected Vehicle environment. It is tested on a model of an isolated intersection made in SUMO simulation software based on real-world traffic data. The validation results confirm the successful detection of traffic state (congestion level) at intersections.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-5042 - Razvoj sustava zasnovanih na učećim agentima za unaprijeđenje upravljanja prometom u gradovima (DLASIUT) (Ivanjko, Edouard, HRZZ - 2020-02) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
Ustanove:
Fakultet prometnih znanosti, Zagreb
Profili:
Tonči Carić
(autor)
Željko Majstorović
(autor)
Edouard Ivanjko
(autor)
Leo Tišljarić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)