Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1212311

Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs


Knor, Martin; Sedlar, Jelena; Škrekovski, Riste
Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs // Mathematics, 10 (2022), 14; 2411, 16 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1212311 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs

Autori
Knor, Martin ; Sedlar, Jelena ; Škrekovski, Riste

Izvornik
Mathematics (2227-7390) 10 (2022), 14; 2411, 16

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
metric dimensions ; Theta graph

Sažetak
The vertex (respectively edge) metric dimension of a graph G is the size of a smallest vertex set in G, which distinguishes all pairs of vertices (respectively edges) in G, and it is denoted by dim(G) (respectively edim(G)). The upper bounds dim(G)≤2c(G)−1 and edim(G)≤2c(G) −1, where c(G) denotes the cyclomatic number of G, were established to hold for cacti without leaves distinct from cycles, and moreover, all leafless cacti that attain the bounds were characterized. It was further conjectured that the same bounds hold for general connected graphs without leaves, and this conjecture was supported by showing that the problem reduces to 2-connected graphs. In this paper, we focus on Θ-graphs, as the most simple 2- connected graphs distinct from the cycle, and show that the the upper bound 2c(G)−1 holds for both metric dimensions of Θ-graphs ; we characterize all Θ-graphs for which the bound is attained. We conclude by conjecturing that there are no other extremal graphs for the bound 2c(G)−1 in the class of leafless graphs besides already known extremal cacti and extremal Θ-graphs mentioned here.

Izvorni jezik
Engleski



POVEZANOST RADA


Projekti:
EK-EFRR-KK.01.1.1.02.0027 - Implementacijom suvremene znanstvenoistraživačke infrastrukture na FGAG Split do pametne specijalizacije u zelenoj i energetski učinkovitoj gradnji (Jajac, Nikša, EK - KK.01.1.1.02) ( CroRIS)

Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split

Profili:

Avatar Url Jelena Sedlar (autor)


Citiraj ovu publikaciju:

Knor, Martin; Sedlar, Jelena; Škrekovski, Riste
Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs // Mathematics, 10 (2022), 14; 2411, 16 (međunarodna recenzija, članak, znanstveni)
Knor, M., Sedlar, J. & Škrekovski, R. (2022) Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs. Mathematics, 10 (14), 2411, 16.
@article{article, author = {Knor, Martin and Sedlar, Jelena and \v{S}krekovski, Riste}, year = {2022}, pages = {16}, chapter = {2411}, keywords = {metric dimensions, Theta graph}, journal = {Mathematics}, volume = {10}, number = {14}, issn = {2227-7390}, title = {Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs}, keyword = {metric dimensions, Theta graph}, chapternumber = {2411} }
@article{article, author = {Knor, Martin and Sedlar, Jelena and \v{S}krekovski, Riste}, year = {2022}, pages = {16}, chapter = {2411}, keywords = {metric dimensions, Theta graph}, journal = {Mathematics}, volume = {10}, number = {14}, issn = {2227-7390}, title = {Remarks on the Vertex and the Edge Metric Dimension of 2-Connected Graphs}, keyword = {metric dimensions, Theta graph}, chapternumber = {2411} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font