Pregled bibliografske jedinice broj: 1212274
Players Detection using U-Net based Fully Convolutional Network
Players Detection using U-Net based Fully Convolutional Network // Proceedings of 2021 29th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)
Hvar, Hrvatska, 2021. str. 12-16 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1212274 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Players Detection using U-Net based Fully
Convolutional Network
Autori
Biliškov, Ivan ; Šarić, Matko ; Russo, Mladen ; Stella Maja
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 2021 29th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)
/ - , 2021, 12-16
Skup
2021 29th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)
Mjesto i datum
Hvar, Hrvatska, 23.09.2021. - 25.09.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
object detection ; CNN ; U-Net, football player detection
Sažetak
People detection in image and video is challenging problem that has great importance in different applications such as surveillance systems, autonomous driving systems, sports video analysis etc. Player detection task, as a subproblem of people detection, is one of the fundamental steps in football video analysis. In this paper we propose a method for player detection based on a fully convolutional neural network. Novelty in our approach is usage of U-Net architecture for generation of player probability map. U-Net consists of contracting path that has typical convolutional neural network architecture and extracting path where upsampled feature maps are combined with features from contracting path to obtain more precise segmentation. Next step is thresholding of player probability map followed by connected component analysis that gives player bounding boxes. Experimental results show promising performance on football field images including distant views, motion blur, complex background etc.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
EK-EFRR-KK.01.1.1.07.0079 - VITA – Virtualna Telemedicinska Asistencija (VITA) (Russo, Mladen, EK - Jačanje kapaciteta za istraživanje, razvoj i inovacije, referentni broj poziva KK.01.1.1.07) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split