Pregled bibliografske jedinice broj: 1212020
Primjena metoda objašnjivosti nad konvolucijskim neuronskim mrežama
Primjena metoda objašnjivosti nad konvolucijskim neuronskim mrežama, 2022., diplomski rad, diplomski, Fakultet Elektrotehnike i Računarstva, Zagreb
CROSBI ID: 1212020 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Primjena metoda objašnjivosti nad konvolucijskim neuronskim mrežama
(Applying Explanatory Methods on Convolutional Neural Networks)
Autori
Luke Frederick Walker
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Fakultet
Fakultet Elektrotehnike i Računarstva
Mjesto
Zagreb
Datum
05.07
Godina
2022
Stranica
50
Mentor
Pintar, Damir
Ključne riječi
convolutional neural networks ; explanatory methods ; feature visualization ; network dissection ; pixel attribution
Sažetak
Convolutional neural networks are known for being capable of increadible feats in computer vision, but as a black box model they suffer from a lack of transparency. There are explanatory methods that attempt to give insights into the inference methodology of these networks. These methods are highly subjective in nature, and there is no objective, universally agreed way to measure their usefulness. These methods are described in detail, with descriptions on the progress that has been made on their improvement over time. The methods are then used and compared on various datasets, with attention given to their applicability, insightfulness, and ease of use.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Damir Pintar
(mentor)