Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1211436

Solving Ultrasound Tomography’s Inverse Problem: Automating Regularization Parameter Selection


Carević, Anita; Slapničar, Ivan; Almekkawy, Mohamed
Solving Ultrasound Tomography’s Inverse Problem: Automating Regularization Parameter Selection // Ieee transactions on ultrasonics ferroelectrics and frequency control, 69 (2022), 8; 2447-2461 doi:10.1109/TUFFC.2022.3182147 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1211436 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Solving Ultrasound Tomography’s Inverse Problem: Automating Regularization Parameter Selection

Autori
Carević, Anita ; Slapničar, Ivan ; Almekkawy, Mohamed

Izvornik
Ieee transactions on ultrasonics ferroelectrics and frequency control (0885-3010) 69 (2022), 8; 2447-2461

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Ultrasound tomography ; Tikhonov regularization ; distorted Born iterative method

Sažetak
Ultrasound tomography (UT) is a noninvasive procedure that can be used to detect breast cancer. Yet to accomplish this, reconstruction algorithms must solve an inherent nonlinear, ill-posed inverse problem. One solution is to use the distorted Born iterative (DBI) method. However, in order for successful convergence, ill- posed inverse problems must also be solved for each individual iteration. We used Tikhonov regularization with different algorithms for choosing the regularization parameter that provides optimal balance, a solution neither overregularized nor underregularized. In this paper we propose a novel algorithm for choosing a balanced parameter, based on minimizing two inversely proportional components: signal loss and scaled noise errors. This begins with an overestimation of the noise in the measured data, which is then appropriately adjusted within each iteration of the DBI method using the discrepancy between measured and calculated data. We compared our algorithm to the L-curve method, as well as generalized cross-validation (GCV) and projection based regularized total least squares (PBRTLS) methods. Four numerical simulations with varying noise levels and aperture settings showed our algorithm provided the lowest relative error for phantom reconstruction, signifying image quality as compared to the other methods.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-UIP-2019-04-5200 - Dekompozicije i aproksimacije matrica i tenzora (DAMAT) (Begović Kovač, Erna, HRZZ - 2019-04) ( CroRIS)
HRZZ-IP-2020-02-2240 - Matrični algoritmi u nekomutativnim asocijativnim algebrama (MANAA) (Slapničar, Ivan, HRZZ - 2020-02) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Ivan Slapničar (autor)

Avatar Url Anita Carević (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Carević, Anita; Slapničar, Ivan; Almekkawy, Mohamed
Solving Ultrasound Tomography’s Inverse Problem: Automating Regularization Parameter Selection // Ieee transactions on ultrasonics ferroelectrics and frequency control, 69 (2022), 8; 2447-2461 doi:10.1109/TUFFC.2022.3182147 (međunarodna recenzija, članak, znanstveni)
Carević, A., Slapničar, I. & Almekkawy, M. (2022) Solving Ultrasound Tomography’s Inverse Problem: Automating Regularization Parameter Selection. Ieee transactions on ultrasonics ferroelectrics and frequency control, 69 (8), 2447-2461 doi:10.1109/TUFFC.2022.3182147.
@article{article, author = {Carevi\'{c}, Anita and Slapni\v{c}ar, Ivan and Almekkawy, Mohamed}, year = {2022}, pages = {2447-2461}, DOI = {10.1109/TUFFC.2022.3182147}, keywords = {Ultrasound tomography, Tikhonov regularization, distorted Born iterative method}, journal = {Ieee transactions on ultrasonics ferroelectrics and frequency control}, doi = {10.1109/TUFFC.2022.3182147}, volume = {69}, number = {8}, issn = {0885-3010}, title = {Solving Ultrasound Tomography’s Inverse Problem: Automating Regularization Parameter Selection}, keyword = {Ultrasound tomography, Tikhonov regularization, distorted Born iterative method} }
@article{article, author = {Carevi\'{c}, Anita and Slapni\v{c}ar, Ivan and Almekkawy, Mohamed}, year = {2022}, pages = {2447-2461}, DOI = {10.1109/TUFFC.2022.3182147}, keywords = {Ultrasound tomography, Tikhonov regularization, distorted Born iterative method}, journal = {Ieee transactions on ultrasonics ferroelectrics and frequency control}, doi = {10.1109/TUFFC.2022.3182147}, volume = {69}, number = {8}, issn = {0885-3010}, title = {Solving Ultrasound Tomography’s Inverse Problem: Automating Regularization Parameter Selection}, keyword = {Ultrasound tomography, Tikhonov regularization, distorted Born iterative method} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font