Pregled bibliografske jedinice broj: 1211436
Solving Ultrasound Tomography’s Inverse Problem: Automating Regularization Parameter Selection
Solving Ultrasound Tomography’s Inverse Problem: Automating Regularization Parameter Selection // Ieee transactions on ultrasonics ferroelectrics and frequency control, 69 (2022), 8; 2447-2461 doi:10.1109/TUFFC.2022.3182147 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1211436 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Solving Ultrasound Tomography’s Inverse Problem:
Automating Regularization Parameter Selection
Autori
Carević, Anita ; Slapničar, Ivan ; Almekkawy, Mohamed
Izvornik
Ieee transactions on ultrasonics ferroelectrics and frequency control (0885-3010) 69
(2022), 8;
2447-2461
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Ultrasound tomography ; Tikhonov regularization ; distorted Born iterative method
Sažetak
Ultrasound tomography (UT) is a noninvasive procedure that can be used to detect breast cancer. Yet to accomplish this, reconstruction algorithms must solve an inherent nonlinear, ill-posed inverse problem. One solution is to use the distorted Born iterative (DBI) method. However, in order for successful convergence, ill- posed inverse problems must also be solved for each individual iteration. We used Tikhonov regularization with different algorithms for choosing the regularization parameter that provides optimal balance, a solution neither overregularized nor underregularized. In this paper we propose a novel algorithm for choosing a balanced parameter, based on minimizing two inversely proportional components: signal loss and scaled noise errors. This begins with an overestimation of the noise in the measured data, which is then appropriately adjusted within each iteration of the DBI method using the discrepancy between measured and calculated data. We compared our algorithm to the L-curve method, as well as generalized cross-validation (GCV) and projection based regularized total least squares (PBRTLS) methods. Four numerical simulations with varying noise levels and aperture settings showed our algorithm provided the lowest relative error for phantom reconstruction, signifying image quality as compared to the other methods.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-UIP-2019-04-5200 - Dekompozicije i aproksimacije matrica i tenzora (DAMAT) (Begović Kovač, Erna, HRZZ - 2019-04) ( CroRIS)
HRZZ-IP-2020-02-2240 - Matrični algoritmi u nekomutativnim asocijativnim algebrama (MANAA) (Slapničar, Ivan, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE