Pregled bibliografske jedinice broj: 1211143
Stabilizing direct yaw moment control based on a flexible set-membership constraint
Stabilizing direct yaw moment control based on a flexible set-membership constraint // 2022 30th Mediterranean Conference on Control and Automation (MED)
Vouliagméni, Grčka: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 289-294 doi:10.1109/med54222.2022.9837271 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1211143 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Stabilizing direct yaw moment control based on a
flexible set-membership constraint
Autori
Ileš, Šandor ; Švec, Marko ; Makarun, Petar ; Kir Hromatko, Josip
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2022 30th Mediterranean Conference on Control and Automation (MED)
/ - : Institute of Electrical and Electronics Engineers (IEEE), 2022, 289-294
Skup
30th Mediterranean Conference on Control and Automation (MED 2022)
Mjesto i datum
Vouliagméni, Grčka, 28.06.2022. - 01.07.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
model predictive control, yaw moment control, torque vectoring, linear parameter varying systems
Sažetak
Direct yaw moment control (DYC) can improve a vehicle’s cornering performance by controlling the torque applied to each wheel. However, an important aspect of DYC is dealing with constraints to ensure that torque can be achieved and the force is transferred from the tire to the road without losing traction. An effective way to deal with constraints is to use model predictive control (MPC). This type of control predicts the future behavior of a system based on its model and optimizes its performance over a finite horizon. It is possible to use a velocity-dependent linear time- varying (LTV) vehicle model for prediction. However, when using such a model, it is difficult to guarantee recursive feasibility and stability. In this work, these guarantees are provided using the tensor product model transformation to transform the LTV model into a polytopic linear parameter- varying (LPV) model. Such a model is used to obtain a robust controller and a corresponding ρ-contractive set, and to compute a sequence of nested one- step controllable sets. Online LTV-MPC optimization problem is solved subject to a flexible set membership constraint on the first predicted state that guarantees robust stability.
Izvorni jezik
Engleski
Znanstvena područja
Tehnologija prometa i transport, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb