Pregled bibliografske jedinice broj: 1211137
Predictive direct yaw moment control with active steering based on polytopic linear parameter- varying model
Predictive direct yaw moment control with active steering based on polytopic linear parameter- varying model // 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)
Istanbul: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 920-925 doi:10.1109/codit55151.2022.9804109 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1211137 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predictive direct yaw moment control with active
steering based on polytopic linear parameter-
varying model
Autori
Ileš, Šandor ; Švec, Marko ; Makarun, Petar ; Kir Hromatko, Josip
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)
/ - Istanbul : Institute of Electrical and Electronics Engineers (IEEE), 2022, 920-925
Skup
2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)
Mjesto i datum
Istanbul, Turska, 17.05.2022. - 20.05.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
model predictive control, direct yaw moment control, torque-vectoring, active steering
Sažetak
In this paper, stabilizing predictive direct yaw moment control with active steering is proposed. The prediction model used in the model predictive control algorithm is a linear time-varying (LTV) bicycle model that depends on the velocity. To ensure stability and recursive feasibility regardless of the velocity change, the LTV model is transformed into a polytopic linear parameter- varying (LPV) model using the tensor product model transformation. This model is used to offline solve the robust LQR problem and form the terminal set and terminal cost for the online optimization problem. Furthermore, the same model is used to compute a robust N -step controllable set to the terminal set. In the online optimization problem, the states of the system are constrained in this set to guarantee recursive feasibility. The proposed control algorithm is tested in simulation and experimentally on a laboratory-scale car.
Izvorni jezik
Engleski
Znanstvena područja
Tehnologija prometa i transport, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb