Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1210712

Electric vehicle charging station fault detection: a machine learning approach


Grcić, I.; Pandžić, H.; Šunde, V.
Electric vehicle charging station fault detection: a machine learning approach // CIRED Porto Workshop 2022
Porto, Portugal: Institution of Engineering and Technology, 2022. str. 745-749 doi:10.1049/icp.2022.0810 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1210712 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Electric vehicle charging station fault detection: a machine learning approach

Autori
Grcić, I. ; Pandžić, H. ; Šunde, V.

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Skup
CIRED Porto Workshop 2022

Mjesto i datum
Porto, Portugal, 02.06.2022. - 03.06.2022

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
recurrent neural nets ; fault diagnosis ; battery powered vehicles ; learning (artificial intelligence)

Sažetak
The number of electric vehicles on the roads is increasing, and the number of fast DC charging stations is following this trend. However, the advantages of DC electric vehicle charging stations (ECVS) in terms of efficiency and power output compared to their AC counterparts are accompanied with protection problems. To address these problems, a recurrent neural network-based fault detection method that can detect both solid and arc faults in EVCS is presented.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Profili:

Avatar Url Viktor Šunde (autor)

Avatar Url Hrvoje Pandžić (autor)

Avatar Url Ivan Grcić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Grcić, I.; Pandžić, H.; Šunde, V.
Electric vehicle charging station fault detection: a machine learning approach // CIRED Porto Workshop 2022
Porto, Portugal: Institution of Engineering and Technology, 2022. str. 745-749 doi:10.1049/icp.2022.0810 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Grcić, I., Pandžić, H. & Šunde, V. (2022) Electric vehicle charging station fault detection: a machine learning approach. U: CIRED Porto Workshop 2022 doi:10.1049/icp.2022.0810.
@article{article, author = {Grci\'{c}, I. and Pand\v{z}i\'{c}, H. and \v{S}unde, V.}, year = {2022}, pages = {745-749}, DOI = {10.1049/icp.2022.0810}, keywords = {recurrent neural nets, fault diagnosis, battery powered vehicles, learning (artificial intelligence)}, doi = {10.1049/icp.2022.0810}, title = {Electric vehicle charging station fault detection: a machine learning approach}, keyword = {recurrent neural nets, fault diagnosis, battery powered vehicles, learning (artificial intelligence)}, publisher = {Institution of Engineering and Technology}, publisherplace = {Porto, Portugal} }
@article{article, author = {Grci\'{c}, I. and Pand\v{z}i\'{c}, H. and \v{S}unde, V.}, year = {2022}, pages = {745-749}, DOI = {10.1049/icp.2022.0810}, keywords = {recurrent neural nets, fault diagnosis, battery powered vehicles, learning (artificial intelligence)}, doi = {10.1049/icp.2022.0810}, title = {Electric vehicle charging station fault detection: a machine learning approach}, keyword = {recurrent neural nets, fault diagnosis, battery powered vehicles, learning (artificial intelligence)}, publisher = {Institution of Engineering and Technology}, publisherplace = {Porto, Portugal} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font