Pregled bibliografske jedinice broj: 1210676
Mean Phase Voltages and Duty Cycles Estimation of a Three-Phase Inverter in a Drive System Using Machine Learning Algorithms
Mean Phase Voltages and Duty Cycles Estimation of a Three-Phase Inverter in a Drive System Using Machine Learning Algorithms // Electronics (Basel), 11 (2022), 16; 2632, 28 doi:10.3390/electronics11162623 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1210676 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Mean Phase Voltages and Duty Cycles Estimation of
a Three-Phase Inverter in a Drive System Using
Machine Learning Algorithms
Autori
Anđelić, Nikola ; Lorencin, Ivan ; Glučina, Matko ; Car, Zlatan
Izvornik
Electronics (Basel) (2079-9292) 11
(2022), 16;
2632, 28
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
duty cycle ; electrical drive ; machine learning ; phase voltages ; three-phase inverter
Sažetak
To achieve an accurate, efficient, and high dynamic control performance of electric motor drives, precise phase voltage information is required. However, measuring the phase voltages of electrical motor drives online is expensive and potentially contains measurement errors, so they are estimated by inverter models. In this paper, the idea is to investigate if various machine learning (ML) algorithms could be used to estimate the mean phase voltages and duty cycles of the black-box inverter model and black-box inverter compensation scheme with high accuracy using a publicly available dataset. Initially, nine ML algorithms were trained and tested using default parameters. Then, the randomized hyper-parameter search was developed and implemented alongside a 5-fold cross- validation procedure on each ML algorithm to find the hyper-parameters that will achieve high estimation accuracy on both the training and testing part of a dataset. Based on obtained estimation accuracies, the eight ML algorithms from all nine were chosen and used to build the stacking ensemble. The best mean estimation accuracy values achieved with stacking ensemble in the black-box inverter model are R^2=0.9998, MAE=1.03, and RMSE=1.54, and in the case of the black-box inverter compensation scheme R^2=0.9991, MAE=0.0042, and RMSE=0.0063, respectively.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Strojarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi www.mdpi.com www.researchgate.netCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus