Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1210676

Mean Phase Voltages and Duty Cycles Estimation of a Three-Phase Inverter in a Drive System Using Machine Learning Algorithms


Anđelić, Nikola; Lorencin, Ivan; Glučina, Matko; Car, Zlatan
Mean Phase Voltages and Duty Cycles Estimation of a Three-Phase Inverter in a Drive System Using Machine Learning Algorithms // Electronics (Basel), 11 (2022), 16; 2632, 28 doi:10.3390/electronics11162623 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1210676 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Mean Phase Voltages and Duty Cycles Estimation of a Three-Phase Inverter in a Drive System Using Machine Learning Algorithms

Autori
Anđelić, Nikola ; Lorencin, Ivan ; Glučina, Matko ; Car, Zlatan

Izvornik
Electronics (Basel) (2079-9292) 11 (2022), 16; 2632, 28

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
duty cycle ; electrical drive ; machine learning ; phase voltages ; three-phase inverter

Sažetak
To achieve an accurate, efficient, and high dynamic control performance of electric motor drives, precise phase voltage information is required. However, measuring the phase voltages of electrical motor drives online is expensive and potentially contains measurement errors, so they are estimated by inverter models. In this paper, the idea is to investigate if various machine learning (ML) algorithms could be used to estimate the mean phase voltages and duty cycles of the black-box inverter model and black-box inverter compensation scheme with high accuracy using a publicly available dataset. Initially, nine ML algorithms were trained and tested using default parameters. Then, the randomized hyper-parameter search was developed and implemented alongside a 5-fold cross- validation procedure on each ML algorithm to find the hyper-parameters that will achieve high estimation accuracy on both the training and testing part of a dataset. Based on obtained estimation accuracies, the eight ML algorithms from all nine were chosen and used to build the stacking ensemble. The best mean estimation accuracy values achieved with stacking ensemble in the black-box inverter model are R^2=0.9998, MAE=1.03, and RMSE=1.54, and in the case of the black-box inverter compensation scheme R^2=0.9991, MAE=0.0042, and RMSE=0.0063, respectively.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Strojarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )

Profili:

Avatar Url Zlatan Car (autor)

Avatar Url Nikola Anđelić (autor)

Avatar Url Matko Glučina (autor)

Avatar Url Ivan Lorencin (autor)

Citiraj ovu publikaciju:

Anđelić, Nikola; Lorencin, Ivan; Glučina, Matko; Car, Zlatan
Mean Phase Voltages and Duty Cycles Estimation of a Three-Phase Inverter in a Drive System Using Machine Learning Algorithms // Electronics (Basel), 11 (2022), 16; 2632, 28 doi:10.3390/electronics11162623 (međunarodna recenzija, članak, znanstveni)
Anđelić, N., Lorencin, I., Glučina, M. & Car, Z. (2022) Mean Phase Voltages and Duty Cycles Estimation of a Three-Phase Inverter in a Drive System Using Machine Learning Algorithms. Electronics (Basel), 11 (16), 2632, 28 doi:10.3390/electronics11162623.
@article{article, author = {An\djeli\'{c}, Nikola and Lorencin, Ivan and Glu\v{c}ina, Matko and Car, Zlatan}, year = {2022}, pages = {28}, DOI = {10.3390/electronics11162623}, chapter = {2632}, keywords = {duty cycle, electrical drive, machine learning, phase voltages, three-phase inverter}, journal = {Electronics (Basel)}, doi = {10.3390/electronics11162623}, volume = {11}, number = {16}, issn = {2079-9292}, title = {Mean Phase Voltages and Duty Cycles Estimation of a Three-Phase Inverter in a Drive System Using Machine Learning Algorithms}, keyword = {duty cycle, electrical drive, machine learning, phase voltages, three-phase inverter}, chapternumber = {2632} }
@article{article, author = {An\djeli\'{c}, Nikola and Lorencin, Ivan and Glu\v{c}ina, Matko and Car, Zlatan}, year = {2022}, pages = {28}, DOI = {10.3390/electronics11162623}, chapter = {2632}, keywords = {duty cycle, electrical drive, machine learning, phase voltages, three-phase inverter}, journal = {Electronics (Basel)}, doi = {10.3390/electronics11162623}, volume = {11}, number = {16}, issn = {2079-9292}, title = {Mean Phase Voltages and Duty Cycles Estimation of a Three-Phase Inverter in a Drive System Using Machine Learning Algorithms}, keyword = {duty cycle, electrical drive, machine learning, phase voltages, three-phase inverter}, chapternumber = {2632} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • Social Science Citation Index (SSCI)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font