Pregled bibliografske jedinice broj: 1210641
Input Data Quantization For Real Time Signal Vs Background Classification Using Quantized Neural Network
Input Data Quantization For Real Time Signal Vs Background Classification Using Quantized Neural Network // CIET 2022
Split: Sveučilišni odjel za stručne studije Sveučilišta u Splitu, 2022. str. 340-347 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1210641 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Input Data Quantization For Real Time Signal Vs
Background Classification Using Quantized
Neural Network
Autori
Burazin Mišura, Arijana ; Ožegović, Julije ; Musić, Josip ; Lelas, Damir
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
CIET 2022
/ - Split : Sveučilišni odjel za stručne studije Sveučilišta u Splitu, 2022, 340-347
ISBN
978-953-7220-70-9
Skup
5th Conference Contemporary Issues in Economics and Technology (CIET 2022)
Mjesto i datum
Valencia, Španjolska, 16.06.2022. - 17.06.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
LHC, CMS, neural network, quantization, classification
Sažetak
The volume of data generated as a result of proton-proton collisions at the Large Hadron Collider (LHC) project represents the real challenge for processing and storage. A huge increase in data rate expected in the High Luminosity phase of the project requires more efficient real-time analysis methods that will enable a fast and accurate selection of events of interest from the enormous background production. Machine learning methods have been used in high energy physics successfully for different ranges of tasks. Quantized neural networks together with specialized library hls4ml enable the deployment of neural network models in Field Programmable Gate Arrays (FPGAs). Input quantization can, even more, reduce the model size while maintaining accuracy. A model with saturated data quantized with 2 bit retains accuracy higher than 90% representing a possible mechanism for real-time signal/background classification.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Sveučilište u Splitu Sveučilišni odjel za stručne studije
Profili:
Damir Lelas
(autor)
Josip Musić
(autor)
Julije Ožegović
(autor)
Arijana Burazin Misura
(autor)