Pregled bibliografske jedinice broj: 1210395
Error State Extended Kalman Filter Multi-Sensor Fusion for Unmanned Aerial Vehicle Localization in GPS and Magnetometer Denied Indoor Environments
Error State Extended Kalman Filter Multi-Sensor Fusion for Unmanned Aerial Vehicle Localization in GPS and Magnetometer Denied Indoor Environments // 2022 International Conference on Unmanned Aircraft Systems (ICUAS 2022)
Dubrovnik, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 184-190 doi:10.1109/icuas54217.2022.9836124 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1210395 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Error State Extended Kalman Filter Multi-Sensor
Fusion for Unmanned Aerial Vehicle Localization in
GPS and Magnetometer Denied Indoor Environments
Autori
Markovic, Lovro ; Kovac, Marin ; Milijas, Robert ; Car, Marko ; Bogdan, Stjepan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Skup
2022 International Conference on Unmanned Aircraft Systems (ICUAS 2022)
Mjesto i datum
Dubrovnik, Hrvatska, 21.06.2022. - 24.06.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Simultaneous localization and mapping , Magnetometers , Magnetic separation , Position control , Position measurement , Autonomous aerial vehicles , Motion capture
Sažetak
This paper addresses the issues of unmanned aerial vehicle (UAV) indoor navigation, specifically in areas where GPS and magnetometer sensor measurements are unavailable or unreliable. The proposed solution is to use an error state extended Kalman filter (ES -EKF) in the context of multi-sensor fusion. Its implementation is adapted to fuse measurements from multiple sensor sources and the state model is extended to account for sensor drift and possible calibration inaccuracies. Experimental validation is performed by fusing inertial measurement unit (IMU) data obtained from the PixHawk 2.1 flight controller with pose measurements from light detection and ranging (LiDAR) Cartographer SLAM, visual odometry provided by the Intel T265 camera and position measurements from the Pozyx ultra-wideband (UWB) indoor positioning system. The estimated odometry from ES-EKF is validated against ground truth data from the Optitrack motion capture system and its use in a position control loop to stabilize the UAV is demonstrated.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Profili:
Stjepan Bogdan
(autor)
Marko Car
(autor)
Robert Milijaš
(autor)
Marina Kovač
(autor)
Lovro Marković
(autor)