Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1210255

The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments


Sinčić, Marko; Bernat Gazibara, Sanja; Krkač, Martin; Lukačić, Hrvoje; Mihalić Arbanas, Snježana
The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments // Land (Basel), 11 (2022), 8; 1360, 37 doi:10.3390/land11081360 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1210255 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments

Autori
Sinčić, Marko ; Bernat Gazibara, Sanja ; Krkač, Martin ; Lukačić, Hrvoje ; Mihalić Arbanas, Snježana

Izvornik
Land (Basel) (2073-445X) 11 (2022), 8; 1360, 37

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
landslide ; large-scale landslide hazard assessment ; LiDAR ; high-resolution orthophoto ; landslide inventory ; landslide conditioning factors ; elememts at risk

Sažetak
The objective of the study is to show that landslide conditioning factors derived from different source data give significantly different relative influences on the weight factors derived with statistical models for landslide susceptibility modelling and risk analysis. The analysis of the input data for large-scale landslide hazard assessment was performed on a study area (20.2 km2) in Hrvatsko Zagorje (Croatia, Europe), an area highly susceptible to sliding with limited geoinformation data, including landslide data. The main advantage of remote sensing technique (i.e., LiDAR, Light Detection and Ranging) data and orthophoto images is that they enable 3D surface models with high precision and spatial resolution that can be used for deriving all input data needed for landslide hazard assessment. The visual interpretation of LiDAR DTM (Digital Terrain Model) morphometric derivatives resulted in a detailed and complete landslide inventory map, which consists of 912 identified and mapped landslides, ranging in size from 3.3 to 13, 779 m2. This inventory was used for quantitative analysis of 16 input data layers from 11 different sources to analyse landslide presence in factor classes and thus comparing landslide conditioning factors from available small-scale data with high-resolution LiDAR data and orthophoto images, pointing out the negative influence of small-scale source data. Therefore, it can be concluded that small-scale landslide factor maps derived from publicly available sources should not be used for large-scale analyses because they will result in incorrect assumptions about conditioning factors compared with LiDAR DTM derivative factor maps. Furthermore, high-resolution LiDAR DTM and orthophoto images are optimal input data because they enable derivation of the most commonly used landslide conditioning factors for susceptibility modelling and detailed datasets about elements at risk (i.e., buildings and traffic infrastructure data layers).

Izvorni jezik
Engleski

Znanstvena područja
Geologija, Rudarstvo, nafta i geološko inženjerstvo

Napomena
Glavni autori: Marko Sinčić i Sanja Bernat Gazibara



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-9900 - Razvoj metodologije procjene podložnosti na klizanje za planiranje namjene zemljišta primjenom LiDAR tehnologije (LandSlidePlan) (Mihalić Arbanas, Snježana, HRZZ - 2019-04) ( CroRIS)
--DOK-2020-01-2432 - Razvoj metodologije procjene podložnosti na klizanje za planiranje namjene zemljišta primjenom LiDAR tehnologije (LandSlidePlan) (Mihalić Arbanas, Snježana) ( CroRIS)

Ustanove:
Rudarsko-geološko-naftni fakultet, Zagreb

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mdpi.com

Citiraj ovu publikaciju:

Sinčić, Marko; Bernat Gazibara, Sanja; Krkač, Martin; Lukačić, Hrvoje; Mihalić Arbanas, Snježana
The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments // Land (Basel), 11 (2022), 8; 1360, 37 doi:10.3390/land11081360 (međunarodna recenzija, članak, znanstveni)
Sinčić, M., Bernat Gazibara, S., Krkač, M., Lukačić, H. & Mihalić Arbanas, S. (2022) The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments. Land (Basel), 11 (8), 1360, 37 doi:10.3390/land11081360.
@article{article, author = {Sin\v{c}i\'{c}, Marko and Bernat Gazibara, Sanja and Krka\v{c}, Martin and Luka\v{c}i\'{c}, Hrvoje and Mihali\'{c} Arbanas, Snje\v{z}ana}, year = {2022}, pages = {37}, DOI = {10.3390/land11081360}, chapter = {1360}, keywords = {landslide, large-scale landslide hazard assessment, LiDAR, high-resolution orthophoto, landslide inventory, landslide conditioning factors, elememts at risk}, journal = {Land (Basel)}, doi = {10.3390/land11081360}, volume = {11}, number = {8}, issn = {2073-445X}, title = {The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments}, keyword = {landslide, large-scale landslide hazard assessment, LiDAR, high-resolution orthophoto, landslide inventory, landslide conditioning factors, elememts at risk}, chapternumber = {1360} }
@article{article, author = {Sin\v{c}i\'{c}, Marko and Bernat Gazibara, Sanja and Krka\v{c}, Martin and Luka\v{c}i\'{c}, Hrvoje and Mihali\'{c} Arbanas, Snje\v{z}ana}, year = {2022}, pages = {37}, DOI = {10.3390/land11081360}, chapter = {1360}, keywords = {landslide, large-scale landslide hazard assessment, LiDAR, high-resolution orthophoto, landslide inventory, landslide conditioning factors, elememts at risk}, journal = {Land (Basel)}, doi = {10.3390/land11081360}, volume = {11}, number = {8}, issn = {2073-445X}, title = {The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments}, keyword = {landslide, large-scale landslide hazard assessment, LiDAR, high-resolution orthophoto, landslide inventory, landslide conditioning factors, elememts at risk}, chapternumber = {1360} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Social Science Citation Index (SSCI)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font