Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1210140

Artificial neural networks and partial least squares regressions for rapid estimation of mineral insulating liquid properties based on infrared spectroscopic data


Đurina, Vedran; Haramija, Veronika; Vrsaljko, Dijana; Vrsaljko, Domagoj
Artificial neural networks and partial least squares regressions for rapid estimation of mineral insulating liquid properties based on infrared spectroscopic data // IEEE transactions on dielectrics and electrical insulation, 29 (2022), 4; 1474-1482 doi:10.1109/TDEI.2022.3185573 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1210140 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Artificial neural networks and partial least squares regressions for rapid estimation of mineral insulating liquid properties based on infrared spectroscopic data

Autori
Đurina, Vedran ; Haramija, Veronika ; Vrsaljko, Dijana ; Vrsaljko, Domagoj

Izvornik
IEEE transactions on dielectrics and electrical insulation (1070-9878) 29 (2022), 4; 1474-1482

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial neural networks (ANN) ; chemical property estimation ; infrared spectroscopy ; mineral insulating liquids ; partial least squares (PLS) ; transformer oil

Sažetak
Insulating liquids (transformer oils) are dielectrics used in a wide range of electrical equipment and provide a medium for both insulation and cooling. During equipment operation, liquids are subjected to electrical and thermal stresses. With continued use, they chemically degrade and produce degradation products and aging markers. In this study, models based on Fourier-transform infrared spectroscopic (FTIR) measurements of liquids are proposed for estimating insulating liquid properties (acidity, interfacial tension (IFT), and density) using only a single measurement combined with spectral data analysis. Estimation models basedon artificial neural networks (ANN) and partial least squares (PLS) were developed through training and validation on approximately 850 samples of mineral insulating liquids. The proposed models provide an effective means for estimating the acidity, IFT, and density of mineral insulating liquids. The models provide estimation results comparable in reproducibility to standardized laboratory analyses, provide the means for a rapid and accurate assessment of the condition of the insulating liquid, as well as allow the design of dedicated sensors to perform these analyses online.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Kemijsko inženjerstvo



POVEZANOST RADA


Ustanove:
KONČAR - Institut za elektrotehniku d.d.,
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Profili:

Avatar Url Vedran Đurina (autor)

Avatar Url Domagoj Vrsaljko (autor)

Avatar Url Dijana Vrsaljko (autor)

Poveznice na cjeloviti tekst rada:

doi dx.doi.org ieeexplore.ieee.org

Citiraj ovu publikaciju:

Đurina, Vedran; Haramija, Veronika; Vrsaljko, Dijana; Vrsaljko, Domagoj
Artificial neural networks and partial least squares regressions for rapid estimation of mineral insulating liquid properties based on infrared spectroscopic data // IEEE transactions on dielectrics and electrical insulation, 29 (2022), 4; 1474-1482 doi:10.1109/TDEI.2022.3185573 (međunarodna recenzija, članak, znanstveni)
Đurina, V., Haramija, V., Vrsaljko, D. & Vrsaljko, D. (2022) Artificial neural networks and partial least squares regressions for rapid estimation of mineral insulating liquid properties based on infrared spectroscopic data. IEEE transactions on dielectrics and electrical insulation, 29 (4), 1474-1482 doi:10.1109/TDEI.2022.3185573.
@article{article, author = {\DJurina, Vedran and Haramija, Veronika and Vrsaljko, Dijana and Vrsaljko, Domagoj}, year = {2022}, pages = {1474-1482}, DOI = {10.1109/TDEI.2022.3185573}, keywords = {artificial neural networks (ANN), chemical property estimation, infrared spectroscopy, mineral insulating liquids, partial least squares (PLS), transformer oil}, journal = {IEEE transactions on dielectrics and electrical insulation}, doi = {10.1109/TDEI.2022.3185573}, volume = {29}, number = {4}, issn = {1070-9878}, title = {Artificial neural networks and partial least squares regressions for rapid estimation of mineral insulating liquid properties based on infrared spectroscopic data}, keyword = {artificial neural networks (ANN), chemical property estimation, infrared spectroscopy, mineral insulating liquids, partial least squares (PLS), transformer oil} }
@article{article, author = {\DJurina, Vedran and Haramija, Veronika and Vrsaljko, Dijana and Vrsaljko, Domagoj}, year = {2022}, pages = {1474-1482}, DOI = {10.1109/TDEI.2022.3185573}, keywords = {artificial neural networks (ANN), chemical property estimation, infrared spectroscopy, mineral insulating liquids, partial least squares (PLS), transformer oil}, journal = {IEEE transactions on dielectrics and electrical insulation}, doi = {10.1109/TDEI.2022.3185573}, volume = {29}, number = {4}, issn = {1070-9878}, title = {Artificial neural networks and partial least squares regressions for rapid estimation of mineral insulating liquid properties based on infrared spectroscopic data}, keyword = {artificial neural networks (ANN), chemical property estimation, infrared spectroscopy, mineral insulating liquids, partial least squares (PLS), transformer oil} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • INSPEC


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font