Pregled bibliografske jedinice broj: 1210140
Artificial neural networks and partial least squares regressions for rapid estimation of mineral insulating liquid properties based on infrared spectroscopic data
Artificial neural networks and partial least squares regressions for rapid estimation of mineral insulating liquid properties based on infrared spectroscopic data // IEEE transactions on dielectrics and electrical insulation, 29 (2022), 4; 1474-1482 doi:10.1109/TDEI.2022.3185573 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1210140 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Artificial neural networks and partial least squares regressions for rapid estimation of mineral insulating liquid properties based on infrared spectroscopic data
Autori
Đurina, Vedran ; Haramija, Veronika ; Vrsaljko, Dijana ; Vrsaljko, Domagoj
Izvornik
IEEE transactions on dielectrics and electrical insulation (1070-9878) 29
(2022), 4;
1474-1482
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
artificial neural networks (ANN) ; chemical property estimation ; infrared spectroscopy ; mineral insulating liquids ; partial least squares (PLS) ; transformer oil
Sažetak
Insulating liquids (transformer oils) are dielectrics used in a wide range of electrical equipment and provide a medium for both insulation and cooling. During equipment operation, liquids are subjected to electrical and thermal stresses. With continued use, they chemically degrade and produce degradation products and aging markers. In this study, models based on Fourier-transform infrared spectroscopic (FTIR) measurements of liquids are proposed for estimating insulating liquid properties (acidity, interfacial tension (IFT), and density) using only a single measurement combined with spectral data analysis. Estimation models basedon artificial neural networks (ANN) and partial least squares (PLS) were developed through training and validation on approximately 850 samples of mineral insulating liquids. The proposed models provide an effective means for estimating the acidity, IFT, and density of mineral insulating liquids. The models provide estimation results comparable in reproducibility to standardized laboratory analyses, provide the means for a rapid and accurate assessment of the condition of the insulating liquid, as well as allow the design of dedicated sensors to perform these analyses online.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Kemijsko inženjerstvo
POVEZANOST RADA
Ustanove:
KONČAR - Institut za elektrotehniku d.d.,
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- INSPEC