Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1209154

CGD: A Cloud Gaming Dataset with Gameplay Video and Network Recordings


Slivar, Ivan; Bacic, Kresimir; Orsolic, Irena; Skorin-Kapov, Lea; Suznjevic, Mirko
CGD: A Cloud Gaming Dataset with Gameplay Video and Network Recordings // Proceedings of the 13th ACM Multimedia Systems Conference
Athlone, Irska: Association for Computing Machinery (ACM), 2022. str. 272-278 doi:10.1145/3524273.3532898 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1209154 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
CGD: A Cloud Gaming Dataset with Gameplay Video and Network Recordings

Autori
Slivar, Ivan ; Bacic, Kresimir ; Orsolic, Irena ; Skorin-Kapov, Lea ; Suznjevic, Mirko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 13th ACM Multimedia Systems Conference / - : Association for Computing Machinery (ACM), 2022, 272-278

ISBN
978-1-4503-9283-9

Skup
13th ACM Multimedia Systems Conference (MMSys '22)

Mjesto i datum
Athlone, Irska, 14.06.2022. - 17.06.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Cloud gaming, Gameplay, Raw video, Dataset, Video metrics, Network traffic, User input

Sažetak
With advances in network capabilities, the gaming industry is increasingly turning towards offering "gaming on demand" solutions, with cloud gaming services such as Sony PlayStation Now, Google Stadia, and NVIDIA GeForce NOW expanding their market offerings. Similar to adaptive video streaming services, cloud gaming services typically adapt the quality of game streams (e.g., bitrate, resolution, frame rate) in accordance with current network conditions. To select the most appropriate video encoding parameters given certain conditions, it is important to understand their impact on Quality of Experience (QoE). On the other hand, network operators are interested in understanding the relationships between parameters measurable in the network and cloud gaming QoE, to be able to invoke QoE-aware network management mechanisms. To encourage developments in these areas, comprehensive datasets are crucial, including both network and application layer data. This paper presents CGD, a dataset consisting of 600 game streaming sessions corresponding to 10 games of different genres being played and streamed using the following encoding parameters: bitrate (5, 10, 20 Mbps), resolution (720p, 1080p), and frame rate (30, 60 fps). For every combination repeated five times for each game, the dataset includes: 1) gameplay video recordings, 2) network traffic traces, 3) user input logs (mouse and keyboard), and 4) streaming performance logs.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-9793 - Modeliranje i praćenje iskustvene kvalitete imerzivnih višemedijskih usluga u 5G mrežama (Q-MERSIVE) (Skorin-Kapov, Lea, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Slivar, Ivan; Bacic, Kresimir; Orsolic, Irena; Skorin-Kapov, Lea; Suznjevic, Mirko
CGD: A Cloud Gaming Dataset with Gameplay Video and Network Recordings // Proceedings of the 13th ACM Multimedia Systems Conference
Athlone, Irska: Association for Computing Machinery (ACM), 2022. str. 272-278 doi:10.1145/3524273.3532898 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Slivar, I., Bacic, K., Orsolic, I., Skorin-Kapov, L. & Suznjevic, M. (2022) CGD: A Cloud Gaming Dataset with Gameplay Video and Network Recordings. U: Proceedings of the 13th ACM Multimedia Systems Conference doi:10.1145/3524273.3532898.
@article{article, author = {Slivar, Ivan and Bacic, Kresimir and Orsolic, Irena and Skorin-Kapov, Lea and Suznjevic, Mirko}, year = {2022}, pages = {272-278}, DOI = {10.1145/3524273.3532898}, keywords = {Cloud gaming, Gameplay, Raw video, Dataset, Video metrics, Network traffic, User input}, doi = {10.1145/3524273.3532898}, isbn = {978-1-4503-9283-9}, title = {CGD: A Cloud Gaming Dataset with Gameplay Video and Network Recordings}, keyword = {Cloud gaming, Gameplay, Raw video, Dataset, Video metrics, Network traffic, User input}, publisher = {Association for Computing Machinery (ACM)}, publisherplace = {Athlone, Irska} }
@article{article, author = {Slivar, Ivan and Bacic, Kresimir and Orsolic, Irena and Skorin-Kapov, Lea and Suznjevic, Mirko}, year = {2022}, pages = {272-278}, DOI = {10.1145/3524273.3532898}, keywords = {Cloud gaming, Gameplay, Raw video, Dataset, Video metrics, Network traffic, User input}, doi = {10.1145/3524273.3532898}, isbn = {978-1-4503-9283-9}, title = {CGD: A Cloud Gaming Dataset with Gameplay Video and Network Recordings}, keyword = {Cloud gaming, Gameplay, Raw video, Dataset, Video metrics, Network traffic, User input}, publisher = {Association for Computing Machinery (ACM)}, publisherplace = {Athlone, Irska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font