Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1208474

Generalized Gaussian time series model for increments of EEG data


Leonenko, Nikolai; Salinger, Željka; Sikorskii, Alla; Šuvak, Nenad; Boivin, Michael
Generalized Gaussian time series model for increments of EEG data // Statistics and Its Interface, 16 (2023), 1; 17-29 doi:10.4310/21-SII692 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1208474 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Generalized Gaussian time series model for increments of EEG data
(Generalized Gaussian time series model for increments of EEG data)

Autori
Leonenko, Nikolai ; Salinger, Željka ; Sikorskii, Alla ; Šuvak, Nenad ; Boivin, Michael

Izvornik
Statistics and Its Interface (1938-7989) 16 (2023), 1; 17-29

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
time series ; diffusion process ; diffusion discretization ; generalized gaussian distribution ; heavy-tailed distribution ; tail index

Sažetak
We propose a new strictly stationary time series model with marginal generalized Gaussian distribution and exponentially decaying autocorrelation function for modeling of increments of electroencephalogram (EEG) data collected from Ugandan children during coma from cerebral malaria. The model inherits its appealing properties from the strictly stationary strong mixing Markovian diffusion with invariant generalized Gaussian distribution (GGD). The GGD parametrization used in this paper comprises some famous light-tailed distributions (e.g., Laplace and Gaussian) and some well known and widely applied heavy-tailed distributions (e.g., Student). Two versions of this model fit to the data from each EEG channel. In the first model, marginal distributions is from the light-tailed GGD sub-family, and the distribution parameters were estimated using quasilikelihood approach. In the second model, marginal distributions is heavy- tailed (Student), and the tail index was estimated using the approach based on the empirical scaling function. The estimated parameters from models across EEG channels were explored as potential predictors of neurocognitive outcomes of these children 6 months after recovering from illness. Several of these parameters were shown to be important predictors even after controlling for neurocognitive scores immediately following cerebral malaria illness and traditional blood and cerebrospinal fluid biomarkers collected during hospitalization.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Sveučilište u Osijeku, Odjel za matematiku

Profili:

Avatar Url Nenad Šuvak (autor)

Avatar Url Željka Salinger (autor)

Poveznice na cjeloviti tekst rada:

doi www.intlpress.com

Citiraj ovu publikaciju:

Leonenko, Nikolai; Salinger, Željka; Sikorskii, Alla; Šuvak, Nenad; Boivin, Michael
Generalized Gaussian time series model for increments of EEG data // Statistics and Its Interface, 16 (2023), 1; 17-29 doi:10.4310/21-SII692 (međunarodna recenzija, članak, znanstveni)
Leonenko, N., Salinger, Ž., Sikorskii, A., Šuvak, N. & Boivin, M. (2023) Generalized Gaussian time series model for increments of EEG data. Statistics and Its Interface, 16 (1), 17-29 doi:10.4310/21-SII692.
@article{article, author = {Leonenko, Nikolai and Salinger, \v{Z}eljka and Sikorskii, Alla and \v{S}uvak, Nenad and Boivin, Michael}, year = {2023}, pages = {17-29}, DOI = {10.4310/21-SII692}, keywords = {time series, diffusion process, diffusion discretization, generalized gaussian distribution, heavy-tailed distribution, tail index}, journal = {Statistics and Its Interface}, doi = {10.4310/21-SII692}, volume = {16}, number = {1}, issn = {1938-7989}, title = {Generalized Gaussian time series model for increments of EEG data}, keyword = {time series, diffusion process, diffusion discretization, generalized gaussian distribution, heavy-tailed distribution, tail index} }
@article{article, author = {Leonenko, Nikolai and Salinger, \v{Z}eljka and Sikorskii, Alla and \v{S}uvak, Nenad and Boivin, Michael}, year = {2023}, pages = {17-29}, DOI = {10.4310/21-SII692}, keywords = {time series, diffusion process, diffusion discretization, generalized gaussian distribution, heavy-tailed distribution, tail index}, journal = {Statistics and Its Interface}, doi = {10.4310/21-SII692}, volume = {16}, number = {1}, issn = {1938-7989}, title = {Generalized Gaussian time series model for increments of EEG data}, keyword = {time series, diffusion process, diffusion discretization, generalized gaussian distribution, heavy-tailed distribution, tail index} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font