Pregled bibliografske jedinice broj: 1207551
Data preparation and exploration for descriptive modelling in education
Data preparation and exploration for descriptive modelling in education // 85th International Scientific Conference on Economic and Social Development, Book of Proceedings / Pinto da Costa, Maria E. ; do Rosario Anjos, Maria ; Roska Vlasta (ur.).
Porto, 2022. str. 189-196 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1207551 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Data preparation and exploration for descriptive
modelling in education
Autori
Kadoić, Nikola ; Oreški, Dijana ; Višnjić, Dunja
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
85th International Scientific Conference on Economic and Social Development, Book of Proceedings
/ Pinto da Costa, Maria E. ; do Rosario Anjos, Maria ; Roska Vlasta - Porto, 2022, 189-196
Skup
Economic and social development : 85th International Scientific Conference on Economic and Social Development
Mjesto i datum
Porto, Portugal, 21.07.2022. - 22.07.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
LMS data ; educational data mining ; descriptive modeling.
Sažetak
Education domain generates huge amounts of data, especially in online teaching and learning. Data analysis enables detecting patterns of students' learning behavior which leads to personalized attention and adaptive feedback. Learning management system (LMS) data are in the focus of this paper. The LMS logs store information about students’ login frequency, time of visits, number of downloading different resources, time and frequency of various activities. Within this research, log file analysis is performed from a Business decision making course at the University of Zagreb. Raw LMS data were extracted from Moodle, data was prepared, explained and explored in order to detect patterns in student’s behavior in the online environment. Research results provide a basis for teachers’ interventions on one hand, and serve as an input into predictive models’ development, on the other hand.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Fakultet organizacije i informatike, Varaždin
Citiraj ovu publikaciju:
Časopis indeksira:
- HeinOnline