Pregled bibliografske jedinice broj: 1206894
Novel ensemble collaboration method for dynamic scheduling problems
Novel ensemble collaboration method for dynamic scheduling problems // Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '22)
Boston (MA), Sjedinjene Američke Države: The Association for Computing Machinery (ACM), 2022. str. 893-901 doi:10.1145/3512290.3528807 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1206894 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Novel ensemble collaboration method for dynamic scheduling problems
Autori
Đurasević, Marko ; Planinić, Lucija ; Gala, Francisco Javier Gil ; Jakobović, Domagoj
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
ISBN
9781450392372
Skup
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '22)
Mjesto i datum
Boston (MA), Sjedinjene Američke Države, 09.07.2022. - 13.07.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
ensembles, unrelated machines, genetic programming, dispatching rules, scheduling
Sažetak
Dynamic scheduling problems are important optimisation problems with many real-world applications. Since in dynamic scheduling not all information is available at the start, such problems are usually solved by dispatching rules (DRs), which create the schedule as the system executes. Recently, DRs have been successfully developed using genetic programming. However, a single DR may not efficiently solve different problem instances. Therefore, much research has focused on using DRs collaboratively by forming ensembles. In this paper, a novel ensemble collaboration method for dynamic scheduling is proposed. In this method, DRs are applied independently at each decision point to create a simulation of the schedule for all currently released jobs. Based on these simulations, it is determined which DR makes the best decision and that decision is applied. The results show that the ensembles easily outperform individual DRs for different ensemble sizes. Moreover, the results suggest that it is relatively easy to create good ensembles from a set of independently evolved DRs.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-4333 - Hiperheurističko oblikovanje pravila raspoređivanja (HyDDRa) (Jakobović, Domagoj, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb