Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1206875

Evaluation Of Feature Selection Methods For Vegetation Mapping Using Multitemporal Sentinel Imagery


Dobrinić, Dino; Gašparović, Mateo; Medak, Damir
Evaluation Of Feature Selection Methods For Vegetation Mapping Using Multitemporal Sentinel Imagery // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Nica, Francuska, 2022. str. 485-491 doi:10.5194/isprs-archives-XLIII-B3-2022-485-2022 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1206875 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Evaluation Of Feature Selection Methods For Vegetation Mapping Using Multitemporal Sentinel Imagery

Autori
Dobrinić, Dino ; Gašparović, Mateo ; Medak, Damir

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences / - , 2022, 485-491

Skup
24th ISPRS Congress 2022

Mjesto i datum
Nica, Francuska, 06.06.2022. - 11.06.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
CORINE ; Random Forest ; SAR ; Sentinel-1 ; Sentinel-2 ; Variable Selection ; Vegetation Mapping.

Sažetak
With the recent advances in remote sensing technologies for Earth observation (EO), many different remote sensors (e.g., optical, radar) collect data with distinctive properties. EO data have been employed to monitor croplands and forested areas, oceans and seas, urban settlements, and natural hazards. The spectral, spatial, and temporal resolutions of remote sensors have been continuously improving, making geospatial monitoring more accurate and comprehensive than ever before. To tackle this issue, various variable selection methods (e.g., filter, wrapper, and embedded methods) are nowadays used to reduce data complexity, and hence improve classification accuracy. Therefore, the goal of this research was twofold. Firstly, to assess the performance of the random forest (RF) classifier in a large heterogeneous landscape with diverse land-cover categories using multi-seasonal Sentinel imagery (i.e., Sentinel-1 ; S1 and Sentinel-2 ; S2) and ancillary data. Secondly, to compare RF variable selection methods to identify a subset of predictor variables that will be included in a final, simpler model. Using mean decrease accuracy (MDA) as a feature selection (FS) method, an original dataset was reduced from 114 to 34 input features, and its classification performance outperformed all-feature (114 features) and band-only (36 features) model with an OA of 90.91%. The most pertinent input features for vegetation mapping were S2 spectral bands (14 features), followed by the spectral indices derived from S2, texture features, and S1 bands. This research improved vegetation mapping by integrating radar and optical imagery, especially after applying FS methods which removed redundant and noisy features from the original dataset. Future research should address additional feature selection methods (i.e., filter, wrapper, or the embedded) for vegetation mapping, combined with advanced deep learning methods.

Izvorni jezik
Engleski

Znanstvena područja
Geodezija



POVEZANOST RADA


Ustanove:
Geodetski fakultet, Zagreb

Profili:

Avatar Url Damir Medak (autor)

Avatar Url Dino Dobrinić (autor)

Avatar Url Mateo Gašparović (autor)

Citiraj ovu publikaciju:

Dobrinić, Dino; Gašparović, Mateo; Medak, Damir
Evaluation Of Feature Selection Methods For Vegetation Mapping Using Multitemporal Sentinel Imagery // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Nica, Francuska, 2022. str. 485-491 doi:10.5194/isprs-archives-XLIII-B3-2022-485-2022 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Dobrinić, D., Gašparović, M. & Medak, D. (2022) Evaluation Of Feature Selection Methods For Vegetation Mapping Using Multitemporal Sentinel Imagery. U: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences doi:10.5194/isprs-archives-XLIII-B3-2022-485-2022.
@article{article, author = {Dobrini\'{c}, Dino and Ga\v{s}parovi\'{c}, Mateo and Medak, Damir}, year = {2022}, pages = {485-491}, DOI = {10.5194/isprs-archives-XLIII-B3-2022-485-2022}, keywords = {CORINE, Random Forest, SAR, Sentinel-1, Sentinel-2, Variable Selection, Vegetation Mapping.}, doi = {10.5194/isprs-archives-XLIII-B3-2022-485-2022}, title = {Evaluation Of Feature Selection Methods For Vegetation Mapping Using Multitemporal Sentinel Imagery}, keyword = {CORINE, Random Forest, SAR, Sentinel-1, Sentinel-2, Variable Selection, Vegetation Mapping.}, publisherplace = {Nica, Francuska} }
@article{article, author = {Dobrini\'{c}, Dino and Ga\v{s}parovi\'{c}, Mateo and Medak, Damir}, year = {2022}, pages = {485-491}, DOI = {10.5194/isprs-archives-XLIII-B3-2022-485-2022}, keywords = {CORINE, Random Forest, SAR, Sentinel-1, Sentinel-2, Variable Selection, Vegetation Mapping.}, doi = {10.5194/isprs-archives-XLIII-B3-2022-485-2022}, title = {Evaluation Of Feature Selection Methods For Vegetation Mapping Using Multitemporal Sentinel Imagery}, keyword = {CORINE, Random Forest, SAR, Sentinel-1, Sentinel-2, Variable Selection, Vegetation Mapping.}, publisherplace = {Nica, Francuska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font