Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1206090

Importance sampling for maxima on trees


Basrak, Bojan; Conroy, Michael; Olvera-Cravioto, Mariana; Palmowski, Zbigniew
Importance sampling for maxima on trees // Stochastic processes and their applications, 148 (2022), 139-179 doi:10.1016/j.spa.2022.02.005 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1206090 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Importance sampling for maxima on trees

Autori
Basrak, Bojan ; Conroy, Michael ; Olvera-Cravioto, Mariana ; Palmowski, Zbigniew

Izvornik
Stochastic processes and their applications (0304-4149) 148 (2022); 139-179

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
High-order Lindley equation, branching random walk, importance sampling, weighted branching processes, distributional fixed-point equations, change of measure

Sažetak
We study the all-time supremum of the perturbed branching random walk, known to be the endogenous solution to the high-order Lindley equation: \begin{; ; ; equation*}; ; ; W \stackrel{; ; ; \mathcal{; ; ; D}; ; ; }; ; ; {; ; ; =}; ; ; \max\left\{; ; ; Y, \, \max_{; ; ; 1 \leq i \leq N}; ; ; (W_i + X_i) \right\}; ; ; , \end{; ; ; equation*}; ; ; where the $\{; ; ; W_i\}; ; ; $ are independent copies of $W$, independent of the random vector $(Y, N, \{; ; ; X_i\}; ; ; )$ taking values in $\mathbb{; ; ; R}; ; ; \times \mathbb{; ; ; N}; ; ; \times \mathbb{; ; ; R}; ; ; ^\infty$. Under Kesten assumptions, this solution satisfies \[P(W > t) \sim H e^{; ; ; -\alpha t}; ; ; , \qquad t \to \infty, \] where $\alpha>0$ solves the Cram\'er-Lundberg equation $ E\left[ \sum_{; ; ; i=1}; ; ; ^N e^{; ; ; \alpha X_i}; ; ; \right] = 1$. This paper establishes the tail asymptotics of $W$ by using the forward iterations of the map defining the fixed-point equation combined with a change of measure along a randomly chosen path. This new approach provides an explicit representation of the constant $H$ and gives rise to unbiased and strongly efficient estimators for the rare event probabilities $P(W > t)$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IZHRZ0_180549 - Probabilistic and analytical aspects of generalised regular variation (Basrak, Bojan, HRZZ - Croatian-Swiss Research Programme 2017 - 2023) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Bojan Basrak (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Basrak, Bojan; Conroy, Michael; Olvera-Cravioto, Mariana; Palmowski, Zbigniew
Importance sampling for maxima on trees // Stochastic processes and their applications, 148 (2022), 139-179 doi:10.1016/j.spa.2022.02.005 (međunarodna recenzija, članak, znanstveni)
Basrak, B., Conroy, M., Olvera-Cravioto, M. & Palmowski, Z. (2022) Importance sampling for maxima on trees. Stochastic processes and their applications, 148, 139-179 doi:10.1016/j.spa.2022.02.005.
@article{article, author = {Basrak, Bojan and Conroy, Michael and Olvera-Cravioto, Mariana and Palmowski, Zbigniew}, year = {2022}, pages = {139-179}, DOI = {10.1016/j.spa.2022.02.005}, keywords = {High-order Lindley equation, branching random walk, importance sampling, weighted branching processes, distributional fixed-point equations, change of measure}, journal = {Stochastic processes and their applications}, doi = {10.1016/j.spa.2022.02.005}, volume = {148}, issn = {0304-4149}, title = {Importance sampling for maxima on trees}, keyword = {High-order Lindley equation, branching random walk, importance sampling, weighted branching processes, distributional fixed-point equations, change of measure} }
@article{article, author = {Basrak, Bojan and Conroy, Michael and Olvera-Cravioto, Mariana and Palmowski, Zbigniew}, year = {2022}, pages = {139-179}, DOI = {10.1016/j.spa.2022.02.005}, keywords = {High-order Lindley equation, branching random walk, importance sampling, weighted branching processes, distributional fixed-point equations, change of measure}, journal = {Stochastic processes and their applications}, doi = {10.1016/j.spa.2022.02.005}, volume = {148}, issn = {0304-4149}, title = {Importance sampling for maxima on trees}, keyword = {High-order Lindley equation, branching random walk, importance sampling, weighted branching processes, distributional fixed-point equations, change of measure} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font