Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1205152

Proximal sensing and vegetation indices of wheat for predictive agriculture


Skendžić, Sandra; Lemić, Darija; Lazarević, Boris; Lešić, Vinko; Zovko, Monika
Proximal sensing and vegetation indices of wheat for predictive agriculture // 45th Conference For Students Of Agriculture And Veterinary Medicine With International Participation - Proceedings book
Novi Sad, Srbija, 2021. str. 40-46 (ostalo, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1205152 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Proximal sensing and vegetation indices of wheat for predictive agriculture

Autori
Skendžić, Sandra ; Lemić, Darija ; Lazarević, Boris ; Lešić, Vinko ; Zovko, Monika

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
45th Conference For Students Of Agriculture And Veterinary Medicine With International Participation - Proceedings book / - , 2021, 40-46

Skup
5th Conference For Students Of Agriculture And Veterinary Medicine With International Participation

Mjesto i datum
Novi Sad, Srbija, 18.11.2021

Vrsta sudjelovanja
Ostalo

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
climate change ; wheat ; multispectral imaging ; spectroradiometer ; prediction

Sažetak
Climate change will have the impact on wheat production, in the form of lower harvests, higher costs, and necessary deviation from traditional farming. Monitoring the wheat canopy using remote and proximal sensors during the growing season plays an important role in site-specific management decisions, but could also improve understanding of the abiotic and physiological processes that control plant N uptake, yield, and protein content. As automated sensors provide information on wheat development, we are exploring the hypothesis that proximal canopy reflectance data could define plant phenology in new ways throughout the season, allowing better prediction of crop yields and detection of plant stress caused by climate change parameters. Spectroradiometers and multispectral imaging are capable of measuring the spectral reflectance of plants, providing vegetation indices that are valuable for assessing the amount and condition of vegetation. This paper presents ongoing work on the use of a system to collect multispectral data on wheat development under different climatic conditions, artificially generated and modified in prototype climate chambers

Izvorni jezik
Engleski

Znanstvena područja
Interdisciplinarne tehničke znanosti, Poljoprivreda (agronomija), Interdisciplinarne biotehničke znanosti



POVEZANOST RADA


Projekti:
EK-EFRR-KK.05.1.1.02.0031 - Napredna i prediktivna poljoprivreda za otpornost klimatskim promjenama (AgroSPARC) (Lešić, Vinko; Zovko, Monika; Lemić, Darija; Orsag, Matko, EK - KK.05.1.1.02) ( CroRIS)

Ustanove:
Agronomski fakultet, Zagreb


Citiraj ovu publikaciju:

Skendžić, Sandra; Lemić, Darija; Lazarević, Boris; Lešić, Vinko; Zovko, Monika
Proximal sensing and vegetation indices of wheat for predictive agriculture // 45th Conference For Students Of Agriculture And Veterinary Medicine With International Participation - Proceedings book
Novi Sad, Srbija, 2021. str. 40-46 (ostalo, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Skendžić, S., Lemić, D., Lazarević, B., Lešić, V. & Zovko, M. (2021) Proximal sensing and vegetation indices of wheat for predictive agriculture. U: 45th Conference For Students Of Agriculture And Veterinary Medicine With International Participation - Proceedings book.
@article{article, author = {Skend\v{z}i\'{c}, Sandra and Lemi\'{c}, Darija and Lazarevi\'{c}, Boris and Le\v{s}i\'{c}, Vinko and Zovko, Monika}, year = {2021}, pages = {40-46}, keywords = {climate change, wheat, multispectral imaging, spectroradiometer, prediction}, title = {Proximal sensing and vegetation indices of wheat for predictive agriculture}, keyword = {climate change, wheat, multispectral imaging, spectroradiometer, prediction}, publisherplace = {Novi Sad, Srbija} }
@article{article, author = {Skend\v{z}i\'{c}, Sandra and Lemi\'{c}, Darija and Lazarevi\'{c}, Boris and Le\v{s}i\'{c}, Vinko and Zovko, Monika}, year = {2021}, pages = {40-46}, keywords = {climate change, wheat, multispectral imaging, spectroradiometer, prediction}, title = {Proximal sensing and vegetation indices of wheat for predictive agriculture}, keyword = {climate change, wheat, multispectral imaging, spectroradiometer, prediction}, publisherplace = {Novi Sad, Srbija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font