Pregled bibliografske jedinice broj: 1203934
Mixed Use of Pontryagin’s Principle and the Hamilton-Jacobi-Bellman Equation in Infinite- and Finite-Horizon Constrained Optimal Control
Mixed Use of Pontryagin’s Principle and the Hamilton-Jacobi-Bellman Equation in Infinite- and Finite-Horizon Constrained Optimal Control // International Conference on Intelligent Autonomous Systems (IAS)
Zagreb, Hrvatska, 2022. str. 81-98 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1203934 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Mixed Use of Pontryagin’s Principle and the
Hamilton-Jacobi-Bellman Equation in Infinite- and
Finite-Horizon Constrained Optimal Control
Autori
Weston, Jerome ; Tolić, Domagoj ; Palunko, Ivana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Skup
International Conference on Intelligent Autonomous Systems (IAS)
Mjesto i datum
Zagreb, Hrvatska, 13.06.2022. - 16.06.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
optimal control ; constrained control ; optimization
Sažetak
This paper proposes a framework for solving a class of nonlinear infinite- and finite-horizon optimal control problems with constraints. Establishment of existence and uniqueness of solutions to the Hamilton-Jacobi-Bellman (HJB) equation plays a crucial role in verifying well- posedness of a given problem and in streamlining numerical solutions. The proposed framework revolves around infinite-horizon Bolza-type cost functions with running costs exponentially decaying in time. We show \Gamma-convergence of solutions with such cost functions to the solutions of initial constrained (in)finite- horizon problems (that is, without running costs exponentially decaying in time). Basically, we demonstrate how to approximate solutions of (in)finite-horizon constrained optimal problems using our framework. Employing a solver based on the Pontryagin’s Principle, we efficiently obtain optimal solutions for finite- and infinite-horizon problems. Efficiency of the proposed framework is demonstrated in simulation by solving a 3D path planing problem with obstacles for a full nonlinear model of an autonomous underwater vehicle (AUV).
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Elektrotehnika, Računarstvo
POVEZANOST RADA
Ustanove:
Sveučilište u Dubrovniku,
RIT Croatia, Dubrovnik