Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1203100

Predicting stress–strain behavior of carbon nanotubes using neural networks


Košmerl, Valentina; Štajduhar, Ivan; Čanađija, Marko
Predicting stress–strain behavior of carbon nanotubes using neural networks // Neural computing and applications (2022) doi:10.1007/s00521-022-07430-y (znanstveni, prihvaćen)


CROSBI ID: 1203100 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Predicting stress–strain behavior of carbon nanotubes using neural networks

Autori
Košmerl, Valentina ; Štajduhar, Ivan ; Čanađija, Marko

Vrsta, podvrsta
Radovi u časopisima, znanstveni

Izvornik
Neural computing and applications (2022)

Status rada
Prihvaćen

Ključne riječi
Artificial neural networks ; Constitutive behavior ; Single-walled carbon nanotubes ; Molecular dynamics

Sažetak
Artificial neural networks are employed to predict stress–strain curves for all single-walled carbon nanotube configurations with diameters up to 4 nm. Three model architectures are investigated for the molecular dynamics-derived dataset: a multilayer perceptron, a one-dimensional convolutional neural network, and a residual neural network. The performance of the three models is compared, and they are found to closely match an atomistic-physics-based paradigm while being orders of magnitude faster. The effect of the dataset size on the prediction quality is analyzed. It is shown that 30% of the entire carbon nanotube configuration dataset is representative of the problem. Remarkably, all models demonstrate high accuracy, capturing even the smallest variations due to thermal fluctuations, and can provide averaged stress–strain curves without thermal fluctuations. Additionally, a sensitivity analysis was performed to investigate how the various input feature combinations affect the quality of elimination or prediction of thermal fluctuations. The results are determined by different combinations of input features, with current diameter in combination with temperature identified as the most important parameters affecting the inclusion or exclusion of thermal fluctuations.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-4703 - Nelokalni mehanički modeli nanogreda (nonNano) (Čanađija, Marko, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Poveznice na istraživačke podatke:

data.mendeley.com

Citiraj ovu publikaciju:

Košmerl, Valentina; Štajduhar, Ivan; Čanađija, Marko
Predicting stress–strain behavior of carbon nanotubes using neural networks // Neural computing and applications (2022) doi:10.1007/s00521-022-07430-y (znanstveni, prihvaćen)
Košmerl, V., Štajduhar, I. & Čanađija, M. (2022) Predicting stress–strain behavior of carbon nanotubes using neural networks. Prihvaćen za objavljivanje u Neural computing and applications. [Preprint] doi:10.1007/s00521-022-07430-y.
@unknown{unknown, author = {Ko\v{s}merl, Valentina and \v{S}tajduhar, Ivan and \v{C}ana\djija, Marko}, year = {2022}, DOI = {10.1007/s00521-022-07430-y}, keywords = {Artificial neural networks, Constitutive behavior, Single-walled carbon nanotubes, Molecular dynamics}, journal = {Neural computing and applications}, doi = {10.1007/s00521-022-07430-y}, title = {Predicting stress–strain behavior of carbon nanotubes using neural networks}, keyword = {Artificial neural networks, Constitutive behavior, Single-walled carbon nanotubes, Molecular dynamics} }
@unknown{unknown, author = {Ko\v{s}merl, Valentina and \v{S}tajduhar, Ivan and \v{C}ana\djija, Marko}, year = {2022}, DOI = {10.1007/s00521-022-07430-y}, keywords = {Artificial neural networks, Constitutive behavior, Single-walled carbon nanotubes, Molecular dynamics}, journal = {Neural computing and applications}, doi = {10.1007/s00521-022-07430-y}, title = {Predicting stress–strain behavior of carbon nanotubes using neural networks}, keyword = {Artificial neural networks, Constitutive behavior, Single-walled carbon nanotubes, Molecular dynamics} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font