Pregled bibliografske jedinice broj: 1203100
Predicting stress–strain behavior of carbon nanotubes using neural networks
Predicting stress–strain behavior of carbon nanotubes using neural networks // Neural computing and applications (2022) doi:10.1007/s00521-022-07430-y (znanstveni, prihvaćen)
CROSBI ID: 1203100 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predicting stress–strain behavior of carbon
nanotubes using neural networks
Autori
Košmerl, Valentina ; Štajduhar, Ivan ; Čanađija, Marko
Vrsta, podvrsta
Radovi u časopisima,
znanstveni
Izvornik
Neural computing and applications (2022)
Status rada
Prihvaćen
Ključne riječi
Artificial neural networks ; Constitutive behavior ; Single-walled carbon nanotubes ; Molecular dynamics
Sažetak
Artificial neural networks are employed to predict stress–strain curves for all single-walled carbon nanotube configurations with diameters up to 4 nm. Three model architectures are investigated for the molecular dynamics-derived dataset: a multilayer perceptron, a one-dimensional convolutional neural network, and a residual neural network. The performance of the three models is compared, and they are found to closely match an atomistic-physics-based paradigm while being orders of magnitude faster. The effect of the dataset size on the prediction quality is analyzed. It is shown that 30% of the entire carbon nanotube configuration dataset is representative of the problem. Remarkably, all models demonstrate high accuracy, capturing even the smallest variations due to thermal fluctuations, and can provide averaged stress–strain curves without thermal fluctuations. Additionally, a sensitivity analysis was performed to investigate how the various input feature combinations affect the quality of elimination or prediction of thermal fluctuations. The results are determined by different combinations of input features, with current diameter in combination with temperature identified as the most important parameters affecting the inclusion or exclusion of thermal fluctuations.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-4703 - Nelokalni mehanički modeli nanogreda (nonNano) (Čanađija, Marko, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci
Poveznice na cjeloviti tekst rada:
doi link.springer.comPoveznice na istraživačke podatke:
data.mendeley.comCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus