Pregled bibliografske jedinice broj: 1202557
Optimal Sensor Placement Using Learning Models—A Mediterranean Case Study
Optimal Sensor Placement Using Learning Models—A Mediterranean Case Study // Remote sensing, 14 (2022), 13; 2989, 16 doi:10.3390/rs14132989 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1202557 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Optimal Sensor Placement Using Learning Models—A
Mediterranean
Case Study
Autori
Kalinić, Hrvoje ; Ćatipović, Leon ; Matić, Frano
Izvornik
Remote sensing (2072-4292) 14
(2022), 13;
2989, 16
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
optimal sensor placement ; feature selection ; unsupervised learning ; clustering ; self-organizing maps ; neural gas ; k-means
Sažetak
In this paper, we discuss different approaches to optimal sensor placement and propose that an optimal sensor location can be selected using unsupervised learning methods such as self- organising maps, neural gas or the K-means algorithm. We show how each of the algorithms can be used for this purpose and that additional constraints such as distance from shore, which is presumed to be related to deployment and maintenance costs, can be considered. The study uses wind data over the Mediterranean Sea and uses the reconstruction error to evaluate sensor location selection. The reconstruction error shows that results deteriorate when additional constraints are added to the equation. However, it is also shown that a small fraction of the data is sufficient to reconstruct wind data over a larger geographic area with an error comparable to that of a meteorological model. The results are confirmed by several experiments and are consistent with the results of previous studies.
Izvorni jezik
Engleski
Znanstvena područja
Interdisciplinarne prirodne znanosti, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-UIP-2019-04-1737 - Proširenje osjetilnosti senzora u laboratoriju za obradbu i analizu podataka iz okoline (SSA@EDAL) (Kalinić, Hrvoje, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Institut za oceanografiju i ribarstvo, Split,
Prirodoslovno-matematički fakultet, Split,
Sveučilište u Splitu Sveučilišni odjel za studije mora
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus