Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1202537

Linearization for difference equations with infinite delay


Singh, Lokesh
Linearization for difference equations with infinite delay // Book of Abstracts, 7th Croatian Mathematical Congress / Ćurković, Andrijana ; Grbac, Zorana ; Jadrijević, Borka ; Klaričić Bakula, Milic (ur.).
Split: Prirodoslovno-matematički fakultet Sveučilišta u Splitu, 2022. str. 73-73 (predavanje, nije recenziran, sažetak, znanstveni)


CROSBI ID: 1202537 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Linearization for difference equations with infinite delay

Autori
Singh, Lokesh

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Book of Abstracts, 7th Croatian Mathematical Congress / Ćurković, Andrijana ; Grbac, Zorana ; Jadrijević, Borka ; Klaričić Bakula, Milic - Split : Prirodoslovno-matematički fakultet Sveučilišta u Splitu, 2022, 73-73

Skup
7th Croatian Mathematical Congress

Mjesto i datum
Split, Hrvatska, 15.06.2022. - 18.06.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
difference equations: infinite delay ; linearization

Sažetak
One of the most common technique to study a nonlinear dynamics is to find an equivalent linear dynamics. The process of constructing a map, which transforms a nonlinear dynamics into a linear dynamics is commonly known as Linearization. Let ( X , ∥ ⋅ ∥ ) be an arbitrary Banach space and let B := {; ϕ : Z − → X ∣ ∣ ∥ ϕ ∥ B < ∞ }; be a Banach space of sequences with appropriate norm ∥ ⋅ ∥ B . Given m ∈ Z + and a sequence x : Z → X , define a new sequence x m : Z − → X given by x m ( j ) := x ( m + j ) for all j ∈ Z − . In this talk, I am going to present a result on the Linearization of Difference equation with infinite delay, x ( m + 1 ) = A m x m + f m ( x m ) for all m ∈ Z + , (1) in a Banach Space X . Here we assume that for each m ∈ Z + , A m : B → X is a bounded linear map and the perturbation ( f m ) m ∈ Z + is small and Lipschitz. In this result, a sequence of continuous and one-one maps, ( h m ) m ∈ Z + , is constructed which gives equivalency between the nonlinear dynamics (1) and its linear counterpart. We also showed that when ( A m ) m ∈ Z + admits exponential dichotomy, our result is applicable.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-1239 - Operatori pomaka, statistički zakoni i beskonačno-dimenzionalni dinamički sustavi (TOSLDS) (Dragičević, Davor, HRZZ - 2019-04) ( CroRIS)


Citiraj ovu publikaciju:

Singh, Lokesh
Linearization for difference equations with infinite delay // Book of Abstracts, 7th Croatian Mathematical Congress / Ćurković, Andrijana ; Grbac, Zorana ; Jadrijević, Borka ; Klaričić Bakula, Milic (ur.).
Split: Prirodoslovno-matematički fakultet Sveučilišta u Splitu, 2022. str. 73-73 (predavanje, nije recenziran, sažetak, znanstveni)
Singh, L. (2022) Linearization for difference equations with infinite delay. U: Ćurković, A., Grbac, Z., Jadrijević, B. & Klaričić Bakula, M. (ur.)Book of Abstracts, 7th Croatian Mathematical Congress.
@article{article, author = {Singh, Lokesh}, year = {2022}, pages = {73-73}, keywords = {difference equations: infinite delay, linearization}, title = {Linearization for difference equations with infinite delay}, keyword = {difference equations: infinite delay, linearization}, publisher = {Prirodoslovno-matemati\v{c}ki fakultet Sveu\v{c}ili\v{s}ta u Splitu}, publisherplace = {Split, Hrvatska} }
@article{article, author = {Singh, Lokesh}, year = {2022}, pages = {73-73}, keywords = {difference equations: infinite delay, linearization}, title = {Linearization for difference equations with infinite delay}, keyword = {difference equations: infinite delay, linearization}, publisher = {Prirodoslovno-matemati\v{c}ki fakultet Sveu\v{c}ili\v{s}ta u Splitu}, publisherplace = {Split, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font