Pregled bibliografske jedinice broj: 1202537
Linearization for difference equations with infinite delay
Linearization for difference equations with infinite delay // Book of Abstracts, 7th Croatian Mathematical Congress / Ćurković, Andrijana ; Grbac, Zorana ; Jadrijević, Borka ; Klaričić Bakula, Milic (ur.).
Split: Prirodoslovno-matematički fakultet Sveučilišta u Splitu, 2022. str. 73-73 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1202537 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Linearization for difference equations with infinite
delay
Autori
Singh, Lokesh
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Book of Abstracts, 7th Croatian Mathematical Congress
/ Ćurković, Andrijana ; Grbac, Zorana ; Jadrijević, Borka ; Klaričić Bakula, Milic - Split : Prirodoslovno-matematički fakultet Sveučilišta u Splitu, 2022, 73-73
Skup
7th Croatian Mathematical Congress
Mjesto i datum
Split, Hrvatska, 15.06.2022. - 18.06.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
difference equations: infinite delay ; linearization
Sažetak
One of the most common technique to study a nonlinear dynamics is to find an equivalent linear dynamics. The process of constructing a map, which transforms a nonlinear dynamics into a linear dynamics is commonly known as Linearization. Let ( X , ∥ ⋅ ∥ ) be an arbitrary Banach space and let B := {; ϕ : Z − → X ∣ ∣ ∥ ϕ ∥ B < ∞ }; be a Banach space of sequences with appropriate norm ∥ ⋅ ∥ B . Given m ∈ Z + and a sequence x : Z → X , define a new sequence x m : Z − → X given by x m ( j ) := x ( m + j ) for all j ∈ Z − . In this talk, I am going to present a result on the Linearization of Difference equation with infinite delay, x ( m + 1 ) = A m x m + f m ( x m ) for all m ∈ Z + , (1) in a Banach Space X . Here we assume that for each m ∈ Z + , A m : B → X is a bounded linear map and the perturbation ( f m ) m ∈ Z + is small and Lipschitz. In this result, a sequence of continuous and one-one maps, ( h m ) m ∈ Z + , is constructed which gives equivalency between the nonlinear dynamics (1) and its linear counterpart. We also showed that when ( A m ) m ∈ Z + admits exponential dichotomy, our result is applicable.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-1239 - Operatori pomaka, statistički zakoni i beskonačno-dimenzionalni dinamički sustavi (TOSLDS) (Dragičević, Davor, HRZZ - 2019-04) ( CroRIS)