Pregled bibliografske jedinice broj: 1202250
Process monitoring and predictive diagnostics
Process monitoring and predictive diagnostics, 2019., diplomski rad, preddiplomski, Fakultet kemijskog inženjerstva i tehnologije, Zagreb
CROSBI ID: 1202250 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Process monitoring and predictive diagnostics
Autori
Brzović, Adriana
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, preddiplomski
Fakultet
Fakultet kemijskog inženjerstva i tehnologije
Mjesto
Zagreb
Datum
19.09
Godina
2019
Stranica
45
Mentor
Bolf, Nenad
Ključne riječi
machine learning ; heat exchanger ; fouling ; neural network ; random forest
Sažetak
As technology advances, particularly in the IT sector, more and more companies running large-scale industrial operations look to computer based solutions to replace expensive monitoring and maintenance methods. Machine learning is one such solution gaining popularity in the last couple of years. This paper explores how machine learning models can be used for preventative and predictive maintenance of an industrial heat exchanger by continuously detecting fouling formation. The results of the neural network model show successful prediction of fouling formation in the heat exchanger. Random forest model does not successfully predict fouling formation as it cannot extrapolate on new data. The results of this study show great potential in application of machine learning methods in the industry for improving production processes in terms of greater efficiency, energy and raw material saving.
Izvorni jezik
Engleski
Znanstvena područja
Kemijsko inženjerstvo
POVEZANOST RADA
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Profili:
Nenad Bolf
(mentor)