Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1201785

A UAS and machine learning classification approach to suitability prediction of expanding natural habitats for endangered flora species


Jurišić, Mladen; Radočaj, Dorijan; Plaščak, Ivan; Rapčan, Irena
A UAS and machine learning classification approach to suitability prediction of expanding natural habitats for endangered flora species // Remote sensing, 14 (2022), 13; 3054, 20 doi:10.3390/rs14133054 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1201785 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A UAS and machine learning classification approach to suitability prediction of expanding natural habitats for endangered flora species
(A UAS and machine learning classification approach to suitability prediction of expanding natural habitats for endangered flora species)

Autori
Jurišić, Mladen ; Radočaj, Dorijan ; Plaščak, Ivan ; Rapčan, Irena

Izvornik
Remote sensing (2072-4292) 14 (2022), 13; 3054, 20

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
nature conservation ; random forest ; environmental criteria ; classification ; multispectral imaging

Sažetak
In this study, we propose integrating unmanned aerial systems (UASs) and machine learning classification for suitability prediction of expanding habitats for endangered flora species to prevent further extinction. Remote sensing imaging of the protected steppe-like grassland in Bilje using the DJI P4 Multispectral UAS ensured non- invasive data collection. A total of 129 individual flora units of five endangered flora species, including small pasque flower (Pulsatilla pratensis (L.) Miller ssp. nigricans (Störck) Zämelis), green-winged orchid (Orchis morio (L.)), Hungarian false leopardbane (Doronicum hungaricum Rchb.f.), bloody cranesbill (Geranium sanguineum (L.)) and Hungarian iris (Iris variegate (L.)) were detected and georeferenced. Habitat suitability in the projected area, designated for the expansion of the current area of steppe-like grassland in Bilje, was predicted using the binomial machine learning classification algorithm based on three groups of environmental abiotic criteria: vegetation, soil, and topography. Four machine learning classification methods were evaluated: random forest, XGBoost, neural network, and generalized linear model. The random forest method outperformed the other classification methods for all five flora species and achieved the highest receiver operating characteristic (ROC) values, ranging from 0.809 to 0.999. Soil compaction was the least favorable criterion for the habitat suitability of all five flora species, indicating the need to perform soil tillage operations to potentially enable the expansion of their coverage in the projected area. However, potential habitat suitability was detected for the critically endangered flora species of Hungarian false leopardbane, indicating its habitat-related potential for expanding and preventing further extinction. In addition to the current methods of predicting current coverage and population count of endangered species using UASs, the proposed method could serve as a basis for decision making in nature conservation and land management.

Izvorni jezik
Engleski

Znanstvena područja
Biologija, Interdisciplinarne tehničke znanosti, Interdisciplinarne biotehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet agrobiotehničkih znanosti Osijek

Profili:

Avatar Url Ivan Plaščak (autor)

Avatar Url Dorijan Radočaj (autor)

Avatar Url Irena Rapčan (autor)

Avatar Url Mladen Jurišić (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Jurišić, Mladen; Radočaj, Dorijan; Plaščak, Ivan; Rapčan, Irena
A UAS and machine learning classification approach to suitability prediction of expanding natural habitats for endangered flora species // Remote sensing, 14 (2022), 13; 3054, 20 doi:10.3390/rs14133054 (međunarodna recenzija, članak, znanstveni)
Jurišić, M., Radočaj, D., Plaščak, I. & Rapčan, I. (2022) A UAS and machine learning classification approach to suitability prediction of expanding natural habitats for endangered flora species. Remote sensing, 14 (13), 3054, 20 doi:10.3390/rs14133054.
@article{article, author = {Juri\v{s}i\'{c}, Mladen and Rado\v{c}aj, Dorijan and Pla\v{s}\v{c}ak, Ivan and Rap\v{c}an, Irena}, year = {2022}, pages = {20}, DOI = {10.3390/rs14133054}, chapter = {3054}, keywords = {nature conservation, random forest, environmental criteria, classification, multispectral imaging}, journal = {Remote sensing}, doi = {10.3390/rs14133054}, volume = {14}, number = {13}, issn = {2072-4292}, title = {A UAS and machine learning classification approach to suitability prediction of expanding natural habitats for endangered flora species}, keyword = {nature conservation, random forest, environmental criteria, classification, multispectral imaging}, chapternumber = {3054} }
@article{article, author = {Juri\v{s}i\'{c}, Mladen and Rado\v{c}aj, Dorijan and Pla\v{s}\v{c}ak, Ivan and Rap\v{c}an, Irena}, year = {2022}, pages = {20}, DOI = {10.3390/rs14133054}, chapter = {3054}, keywords = {nature conservation, random forest, environmental criteria, classification, multispectral imaging}, journal = {Remote sensing}, doi = {10.3390/rs14133054}, volume = {14}, number = {13}, issn = {2072-4292}, title = {A UAS and machine learning classification approach to suitability prediction of expanding natural habitats for endangered flora species}, keyword = {nature conservation, random forest, environmental criteria, classification, multispectral imaging}, chapternumber = {3054} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font