Pregled bibliografske jedinice broj: 1201543
Norm and trace estimation with random rank-one vectors
Norm and trace estimation with random rank-one vectors // XXI Householder Symposium on Numerical Linear Algebra
Selva di Fasano, Italija, 2022. str. 62-63 (poster, međunarodna recenzija, prošireni sažetak, znanstveni)
CROSBI ID: 1201543 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Norm and trace estimation with random rank-one vectors
Autori
Bujanović, Zvonimir ; Kressner, Daniel
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, prošireni sažetak, znanstveni
Izvornik
XXI Householder Symposium on Numerical Linear Algebra
/ - , 2022, 62-63
Skup
XXI Householder Symposium on Numerical Linear Algebra, Program and Book of Abstracts, Selva di Fasano 2022
Mjesto i datum
Selva di Fasano, Italija, 13.06.2022. - 17.06.2022
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
matrix norm ; matrix trace ; random vector ; probabilistic estimator ; Kronecker product
Sažetak
A few matrix-vector multiplications with random vectors are often sufficient to obtain reasonably good estimates for the norm of a general matrix or the trace of a symmetric positive semi-definite matrix. Several such probabilistic estimators have been proposed and analyzed for standard Gaussian and Rademacher random vectors. In this talk, we discuss the use of rank-one random vectors, that is, Kronecker products of (smaller) Gaussian or Rademacher vectors. It is not only cheaper to sample such vectors but it can sometimes also be much cheaper to multiply a matrix with a rank-one vector instead of a general vector. We provide theoretical and numerical evidence that the use of rank-one instead of unstructured random vectors still leads to good estimates. In particular, we show that our rank-one estimators multiplied with a modest constant constitute, with high probability, both upper and lower bounds of the quantity of interest. We illustrate the application of our techniques to condition number estimation for matrix functions.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-6268 - Stohastičke aproksimacije malog ranga i primjene na parametarski ovisne probleme (RandLRAP) (Grubišić, Luka, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb