Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1201209

Nonlinear Birkhoff-James orthogonality preservers in smooth normed spaces


Ilišević, Dijana; Turnšek, Aleksej
Nonlinear Birkhoff-James orthogonality preservers in smooth normed spaces // Journal of mathematical analysis and applications, 511 (2022), 1; 126045, 10 doi:10.1016/j.jmaa.2022.126045 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1201209 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Nonlinear Birkhoff-James orthogonality preservers in smooth normed spaces

Autori
Ilišević, Dijana ; Turnšek, Aleksej

Izvornik
Journal of mathematical analysis and applications (0022-247X) 511 (2022), 1; 126045, 10

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Birkhoff–James orthogonality , nonlinear preserver problem , smooth normed space , isometry , Wigner's theorem

Sažetak
Let X and Y be smooth normed spaces which are either real and dim(X)>2, or infinite dimensional complex, and one of them is reflexive. Then a surjective mapping from X to Y preserves Birkhoff- James orthogonality in both directions if and only if it has the form $x \mapsto \tau(x)Ux$ for some surjective linear or conjugate linear isometry U from X to Y and some scalar-valued mapping $\tau$ on X. In particular, there exists a surjective mapping from X to Y preserving Birkhoff-James orthogonality in both directions if and only if X and Y are isometrically isomorphic or conjugate isometrically isomorphic. Several illustrative examples and relations with Wigner's theorem are also given.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Dijana Ilišević (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Ilišević, Dijana; Turnšek, Aleksej
Nonlinear Birkhoff-James orthogonality preservers in smooth normed spaces // Journal of mathematical analysis and applications, 511 (2022), 1; 126045, 10 doi:10.1016/j.jmaa.2022.126045 (međunarodna recenzija, članak, znanstveni)
Ilišević, D. & Turnšek, A. (2022) Nonlinear Birkhoff-James orthogonality preservers in smooth normed spaces. Journal of mathematical analysis and applications, 511 (1), 126045, 10 doi:10.1016/j.jmaa.2022.126045.
@article{article, author = {Ili\v{s}evi\'{c}, Dijana and Turn\v{s}ek, Aleksej}, year = {2022}, pages = {10}, DOI = {10.1016/j.jmaa.2022.126045}, chapter = {126045}, keywords = {Birkhoff–James orthogonality , nonlinear preserver problem , smooth normed space , isometry , Wigner's theorem}, journal = {Journal of mathematical analysis and applications}, doi = {10.1016/j.jmaa.2022.126045}, volume = {511}, number = {1}, issn = {0022-247X}, title = {Nonlinear Birkhoff-James orthogonality preservers in smooth normed spaces}, keyword = {Birkhoff–James orthogonality , nonlinear preserver problem , smooth normed space , isometry , Wigner's theorem}, chapternumber = {126045} }
@article{article, author = {Ili\v{s}evi\'{c}, Dijana and Turn\v{s}ek, Aleksej}, year = {2022}, pages = {10}, DOI = {10.1016/j.jmaa.2022.126045}, chapter = {126045}, keywords = {Birkhoff–James orthogonality , nonlinear preserver problem , smooth normed space , isometry , Wigner's theorem}, journal = {Journal of mathematical analysis and applications}, doi = {10.1016/j.jmaa.2022.126045}, volume = {511}, number = {1}, issn = {0022-247X}, title = {Nonlinear Birkhoff-James orthogonality preservers in smooth normed spaces}, keyword = {Birkhoff–James orthogonality , nonlinear preserver problem , smooth normed space , isometry , Wigner's theorem}, chapternumber = {126045} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font