Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1200318

Prediction of unfractioned heparin effect using deep learning approach


Radocaj, Tomislav; Lijovic, Lada; Pazur, Iva; Pelajic, Stipe; Skrtic, Matteo; Azdajic, Stjepan
Prediction of unfractioned heparin effect using deep learning approach // Eur J Anaesthesiol 2022 ; 39(Suppl 60):244
Milano, Italija, 2022. str. 244-244 (poster, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1200318 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Prediction of unfractioned heparin effect using deep learning approach

Autori
Radocaj, Tomislav ; Lijovic, Lada ; Pazur, Iva ; Pelajic, Stipe ; Skrtic, Matteo ; Azdajic, Stjepan

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Eur J Anaesthesiol 2022 ; 39(Suppl 60):244 / - , 2022, 244-244

Skup
Euroanaesthesia 2022

Mjesto i datum
Milano, Italija, 04.06.2022. - 06.06.2022

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
anticoagulants ; Pharmacology ; dose-response ; Model ; statistical

Sažetak
Background and Goal of Study: Unfractioned heparin (UFH) is the anticoagulant of choice during carotid endarterectomy surgery (CEA). Activated partial thromboplastin time (aPTT) has been the primary laboratory test used to monitor effect of UFH. Range of 1.5-2.5 times baseline value has gained wide acceptance as therapeutic range in daily clinical practice. Despite being cornerstone of anticoagulation, UHF is limited by its unpredictable pharmacokinetic profile and is difficult to dose accurately. We hypothesized that deep learning, a type of machine learning based on a set of algorithms to model high level abstractions in data using multiple linear and nonlinear transformations, could better interpret the dose-response relationship of UFH. Materials and Methods: We studied 63 consecutive patients undergoing elective carotid endarterectomy in superficial cervical block. Heparin sodium 50 U/kg of total body weight was administered 3 minutes before application of carotid artery cross-clamp and aPTT was measured 30 minutes after heparin administration. We built a model for prediction of aPTT of 1.5 to 2.5 times the baseline value using artificial neural network (ANN). ANN was composed of three layers: input layer, the middle layer and output layer. Input variables included the pharmacokinetic-pharmacodynamic covariates (age, sex, weight, height, previous antiplatelet therapy, complete blood count, biochemistry panel, baseline coagulogram, total heparin dose). Twenty percent of the dataset was used as a testing dataset, and the remaining were used for model training. Results and Discussion: The activation function used for both ANN layers was sigmoid. aPTT of 1.5 to 2.5 times the baseline value at 30 minutes occurred in 12 patients (19.0%). The area under the receiving operator curve (AUROC) was 0.752 with deep learning algorithm prediction accuracy of 90.4%. None of the patients were bellow therapeutic range of aPTT. Conclusion(s): Deep learning approach can be used for calculating better dosage of used drugs to deliver safer, more efficient and more cost-effective doses. Adding more clinical data into this model and testing various models might further improve prediction of heparin effect.

Izvorni jezik
Engleski

Znanstvena područja
Kliničke medicinske znanosti, Farmacija, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)



POVEZANOST RADA


Ustanove:
KBC "Sestre Milosrdnice"

Profili:

Avatar Url Tomislav Radočaj (autor)

Avatar Url Lada Lijović (autor)

Avatar Url Matteo Škrtić (autor)

Poveznice na cjeloviti tekst rada:

www.esaic.org

Citiraj ovu publikaciju:

Radocaj, Tomislav; Lijovic, Lada; Pazur, Iva; Pelajic, Stipe; Skrtic, Matteo; Azdajic, Stjepan
Prediction of unfractioned heparin effect using deep learning approach // Eur J Anaesthesiol 2022 ; 39(Suppl 60):244
Milano, Italija, 2022. str. 244-244 (poster, međunarodna recenzija, sažetak, znanstveni)
Radocaj, T., Lijovic, L., Pazur, I., Pelajic, S., Skrtic, M. & Azdajic, S. (2022) Prediction of unfractioned heparin effect using deep learning approach. U: Eur J Anaesthesiol 2022 ; 39(Suppl 60):244.
@article{article, author = {Radocaj, Tomislav and Lijovic, Lada and Pazur, Iva and Pelajic, Stipe and Skrtic, Matteo and Azdajic, Stjepan}, year = {2022}, pages = {244-244}, keywords = {anticoagulants, Pharmacology, dose-response, Model, statistical}, title = {Prediction of unfractioned heparin effect using deep learning approach}, keyword = {anticoagulants, Pharmacology, dose-response, Model, statistical}, publisherplace = {Milano, Italija} }
@article{article, author = {Radocaj, Tomislav and Lijovic, Lada and Pazur, Iva and Pelajic, Stipe and Skrtic, Matteo and Azdajic, Stjepan}, year = {2022}, pages = {244-244}, keywords = {anticoagulants, Pharmacology, dose-response, Model, statistical}, title = {Prediction of unfractioned heparin effect using deep learning approach}, keyword = {anticoagulants, Pharmacology, dose-response, Model, statistical}, publisherplace = {Milano, Italija} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE





Contrast
Increase Font
Decrease Font
Dyslexic Font