Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1200090

Two-Stage Spatiotemporal Time Series Modelling Approach for Rice Yield Prediction & Advanced Agroecosystem Management


Rathod, Santosha; Saha, Amit; Patil, Rahul; Ondrasek, Gabrijel; Gireesh, Channappa; Anantha, Madhyavenkatapura Siddaiah; Rao, Dhumannatarao Venkata Krishna Nageswara; Bandumula, Nirmala; Senguttuvel, Ponnuvel; Swarnaraj, Arun Kumar et al.
Two-Stage Spatiotemporal Time Series Modelling Approach for Rice Yield Prediction & Advanced Agroecosystem Management // Agronomy, 11 (2021), 12; 2502, 15 doi:10.3390/agronomy11122502 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1200090 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Two-Stage Spatiotemporal Time Series Modelling Approach for Rice Yield Prediction & Advanced Agroecosystem Management

Autori
Rathod, Santosha ; Saha, Amit ; Patil, Rahul ; Ondrasek, Gabrijel ; Gireesh, Channappa ; Anantha, Madhyavenkatapura Siddaiah ; Rao, Dhumannatarao Venkata Krishna Nageswara ; Bandumula, Nirmala ; Senguttuvel, Ponnuvel ; Swarnaraj, Arun Kumar ; Meera, Shaik N. ; Waris, Amtul ; Jeyakumar, Ponnuraj ; Parmar, Brajendra ; Muthuraman, Pitchiahpillai ; Sundaram, Raman Meenakshi

Izvornik
Agronomy (2073-4395) 11 (2021), 12; 2502, 15

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
spatiotemporal time series ; STARMA ; ARIMA ; TDNN ; two-stage STARMA ; crop yield ; prediction

Sažetak
A robust forecast of rice yields is of great importance for medium-to-long-term planning and decision-making in cereal production, from regional to national level. Incorporation of spatially correlated adjacent effects in forecasting models in general, results in accurate forecast. The Space Time Autoregressive Moving Average (STARMA) is the most popular class of model in linear spatiotemporal time series modelling. However, STARMA cannot process nonlinear spatiotemporal relationships in datasets. Alternately, Time Delay Neural Network (TDNN) is a most popular machine learning algorithm to model the nonlinear pattern in data. To overcome these limitations, two-stage STARMA approach was developed to predict rice yield in some of the most intensive national rice agroecosystems in India. The Mean Absolute Percentage Errors value of proposed STARMA-II approach is lower compared to Autoregressive Moving Average (ARIMA) and STARMA model in all examined districts, while the Diebold-Mariano test confirmed that STARMA-II model is significantly different from classical approaches. The proposed STARMA-II approach is promising alternative to classical linear and nonlinear spatiotemporal time series models for estimating mixed linear and nonlinear patterns and can be advanced tool for mid-to-long-term sustainable planning and management of crop yields and patterns in agroecosystems, i.e., food supply and demand from local to regional levels.

Izvorni jezik
Engleski

Znanstvena područja
Poljoprivreda (agronomija)



POVEZANOST RADA


Ustanove:
Agronomski fakultet, Zagreb

Profili:

Avatar Url Gabrijel Ondrašek (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Rathod, Santosha; Saha, Amit; Patil, Rahul; Ondrasek, Gabrijel; Gireesh, Channappa; Anantha, Madhyavenkatapura Siddaiah; Rao, Dhumannatarao Venkata Krishna Nageswara; Bandumula, Nirmala; Senguttuvel, Ponnuvel; Swarnaraj, Arun Kumar et al.
Two-Stage Spatiotemporal Time Series Modelling Approach for Rice Yield Prediction & Advanced Agroecosystem Management // Agronomy, 11 (2021), 12; 2502, 15 doi:10.3390/agronomy11122502 (međunarodna recenzija, članak, znanstveni)
Rathod, S., Saha, A., Patil, R., Ondrasek, G., Gireesh, C., Anantha, M., Rao, D., Bandumula, N., Senguttuvel, P. & Swarnaraj, A. (2021) Two-Stage Spatiotemporal Time Series Modelling Approach for Rice Yield Prediction & Advanced Agroecosystem Management. Agronomy, 11 (12), 2502, 15 doi:10.3390/agronomy11122502.
@article{article, author = {Rathod, Santosha and Saha, Amit and Patil, Rahul and Ondrasek, Gabrijel and Gireesh, Channappa and Anantha, Madhyavenkatapura Siddaiah and Rao, Dhumannatarao Venkata Krishna Nageswara and Bandumula, Nirmala and Senguttuvel, Ponnuvel and Swarnaraj, Arun Kumar and Meera, Shaik N. and Waris, Amtul and Jeyakumar, Ponnuraj and Parmar, Brajendra and Muthuraman, Pitchiahpillai and Sundaram, Raman Meenakshi}, year = {2021}, pages = {15}, DOI = {10.3390/agronomy11122502}, chapter = {2502}, keywords = {spatiotemporal time series, STARMA, ARIMA, TDNN, two-stage STARMA, crop yield, prediction}, journal = {Agronomy}, doi = {10.3390/agronomy11122502}, volume = {11}, number = {12}, issn = {2073-4395}, title = {Two-Stage Spatiotemporal Time Series Modelling Approach for Rice Yield Prediction and Advanced Agroecosystem Management}, keyword = {spatiotemporal time series, STARMA, ARIMA, TDNN, two-stage STARMA, crop yield, prediction}, chapternumber = {2502} }
@article{article, author = {Rathod, Santosha and Saha, Amit and Patil, Rahul and Ondrasek, Gabrijel and Gireesh, Channappa and Anantha, Madhyavenkatapura Siddaiah and Rao, Dhumannatarao Venkata Krishna Nageswara and Bandumula, Nirmala and Senguttuvel, Ponnuvel and Swarnaraj, Arun Kumar and Meera, Shaik N. and Waris, Amtul and Jeyakumar, Ponnuraj and Parmar, Brajendra and Muthuraman, Pitchiahpillai and Sundaram, Raman Meenakshi}, year = {2021}, pages = {15}, DOI = {10.3390/agronomy11122502}, chapter = {2502}, keywords = {spatiotemporal time series, STARMA, ARIMA, TDNN, two-stage STARMA, crop yield, prediction}, journal = {Agronomy}, doi = {10.3390/agronomy11122502}, volume = {11}, number = {12}, issn = {2073-4395}, title = {Two-Stage Spatiotemporal Time Series Modelling Approach for Rice Yield Prediction and Advanced Agroecosystem Management}, keyword = {spatiotemporal time series, STARMA, ARIMA, TDNN, two-stage STARMA, crop yield, prediction}, chapternumber = {2502} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font