Pregled bibliografske jedinice broj: 1200035
Performance Evaluation of Java Serialization Frameworks on Geospatial Big Data
Performance Evaluation of Java Serialization Frameworks on Geospatial Big Data // Proceedings of the 7th International Conference on Smart and Sustainable Technologies (SpliTech 2022)
Split: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-6 doi:10.23919/SpliTech55088.2022.9854334 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1200035 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Performance Evaluation of Java Serialization
Frameworks on Geospatial Big Data
Autori
Ricov, Filip ; Pripužić, Krešimir
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 7th International Conference on Smart and Sustainable Technologies (SpliTech 2022)
/ - Split : Institute of Electrical and Electronics Engineers (IEEE), 2022, 1-6
Skup
7th International Conference on Smart and Sustainable Technologies (SpliTech)
Mjesto i datum
Bol, Hrvatska, 05.07.2022. - 08.07.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
geospatial data ; big data ; serialization ; deserialization ; Java frameworks
Sažetak
Geospatial Big Data refers to spatial datasets exceeding the capacity of current computing systems. These datasets usually contain millions of vector geometries (such as points, polygons and linestrings) that are used to represent the spatial component of geographic features. Each geometry consists of one or more interconnected vertices, where each vertex describes a geographic location. Due to its large volume or high frequency of generation, Geospatial Big Data must be stored and processed in a distributed manner, usually using an open-source Big Data platform such as Apache Spark. This often requires serialization and deserialization of geometries when sending and receiving them among distributed computers. Therefore, the performance of serialization and deserialization has a significant impact on the overall processing performance of Geospatial Big Data. In this paper, we first briefly present seven popular Java serialization frameworks that can work with geometries and then experimentally evaluate and compare their serialization and deserialization performance on Geospatial Big Data.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-UIP-2017-05-9066 - Učinkovita stvarnovremenska obrada brzih geoprostornih podataka (RETROFIT) (Pripužić, Krešimir, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Krešimir Pripužić
(autor)