Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1200035

Performance Evaluation of Java Serialization Frameworks on Geospatial Big Data


Ricov, Filip; Pripužić, Krešimir
Performance Evaluation of Java Serialization Frameworks on Geospatial Big Data // Proceedings of the 7th International Conference on Smart and Sustainable Technologies (SpliTech 2022)
Split: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-6 doi:10.23919/SpliTech55088.2022.9854334 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1200035 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Performance Evaluation of Java Serialization Frameworks on Geospatial Big Data

Autori
Ricov, Filip ; Pripužić, Krešimir

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 7th International Conference on Smart and Sustainable Technologies (SpliTech 2022) / - Split : Institute of Electrical and Electronics Engineers (IEEE), 2022, 1-6

Skup
7th International Conference on Smart and Sustainable Technologies (SpliTech)

Mjesto i datum
Bol, Hrvatska, 05.07.2022. - 08.07.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
geospatial data ; big data ; serialization ; deserialization ; Java frameworks

Sažetak
Geospatial Big Data refers to spatial datasets exceeding the capacity of current computing systems. These datasets usually contain millions of vector geometries (such as points, polygons and linestrings) that are used to represent the spatial component of geographic features. Each geometry consists of one or more interconnected vertices, where each vertex describes a geographic location. Due to its large volume or high frequency of generation, Geospatial Big Data must be stored and processed in a distributed manner, usually using an open-source Big Data platform such as Apache Spark. This often requires serialization and deserialization of geometries when sending and receiving them among distributed computers. Therefore, the performance of serialization and deserialization has a significant impact on the overall processing performance of Geospatial Big Data. In this paper, we first briefly present seven popular Java serialization frameworks that can work with geometries and then experimentally evaluate and compare their serialization and deserialization performance on Geospatial Big Data.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-UIP-2017-05-9066 - Učinkovita stvarnovremenska obrada brzih geoprostornih podataka (RETROFIT) (Pripužić, Krešimir, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Krešimir Pripužić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Ricov, Filip; Pripužić, Krešimir
Performance Evaluation of Java Serialization Frameworks on Geospatial Big Data // Proceedings of the 7th International Conference on Smart and Sustainable Technologies (SpliTech 2022)
Split: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-6 doi:10.23919/SpliTech55088.2022.9854334 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Ricov, F. & Pripužić, K. (2022) Performance Evaluation of Java Serialization Frameworks on Geospatial Big Data. U: Proceedings of the 7th International Conference on Smart and Sustainable Technologies (SpliTech 2022) doi:10.23919/SpliTech55088.2022.9854334.
@article{article, author = {Ricov, Filip and Pripu\v{z}i\'{c}, Kre\v{s}imir}, year = {2022}, pages = {1-6}, DOI = {10.23919/SpliTech55088.2022.9854334}, keywords = {geospatial data, big data, serialization, deserialization, Java frameworks}, doi = {10.23919/SpliTech55088.2022.9854334}, title = {Performance Evaluation of Java Serialization Frameworks on Geospatial Big Data}, keyword = {geospatial data, big data, serialization, deserialization, Java frameworks}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Bol, Hrvatska} }
@article{article, author = {Ricov, Filip and Pripu\v{z}i\'{c}, Kre\v{s}imir}, year = {2022}, pages = {1-6}, DOI = {10.23919/SpliTech55088.2022.9854334}, keywords = {geospatial data, big data, serialization, deserialization, Java frameworks}, doi = {10.23919/SpliTech55088.2022.9854334}, title = {Performance Evaluation of Java Serialization Frameworks on Geospatial Big Data}, keyword = {geospatial data, big data, serialization, deserialization, Java frameworks}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Bol, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font